Augmenting Tumor‐Starvation Therapy by Cancer Cell Autophagy Inhibition

Advanced Science - Tập 7 Số 6 - 2020
Bowen Yang1,2, Li Ding2, Yu Chen1,2, Jianlin Shi1,2
1Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

Tóm tắt

Abstract

It was recently recognized that cancer therapeutic efficacy may be greatly compromised by an intrinsic protective mechanism called autophagy, by which cancer cells survive in harsh conditions such as starvation. Here, a synergetic strategy is described for cancer treatment by suppressing such a protective mechanism for augmenting tumor‐starvation therapy. The synergetic therapy is achieved by restraining glucose metabolism using an antiglycolytic agent to predispose cancer cells to severe energy deprivation; concurrently the downstream autophagic flux and compensatory energy supplies are blocked by the autophagy inhibitor black phosphorus nanosheet. Cancer cells fail to extract their own nutrient to feed themselves, finally succumbing to therapeutic interventions and starving to death. Both in vitro and in vivo results evidence the cooperative effect between the autophagy inhibitor and antiglycolytic agent, which leads to remarkable synergetic antineoplastic outcome. It is expected that such a combinational approach by concurrently blocking exogenous and endogenous nutrition supplies will be beneficial to the design of effective tumor‐specific cancer therapies in the future.

Từ khóa


Tài liệu tham khảo

10.1146/annurev-biophys-060414-034248

10.1016/j.cell.2011.10.026

10.1038/nature03029

10.1042/BJ20111451

10.1128/MCB.00166-09

10.3109/02656736.2011.552087

10.1016/j.cell.2007.12.018

10.1038/nrc3262

10.1038/s41568-018-0048-x

10.1016/j.cell.2014.11.006

10.1038/s41580-019-0120-8

10.1021/acs.chemrev.5b00148

10.1021/cr400372p

10.1038/s41467-018-06749-2

10.1002/advs.201700585

10.1002/anie.201506154

10.1002/adma.201603276

10.1002/adma.201705611

10.1016/j.biomaterials.2018.03.010

10.1002/anie.201810878

Dean J. A., 1998, Lange's Handbook of Chemistry, 8.17

10.1126/science.1160809

10.1002/pros.21172

10.1016/j.canlet.2014.09.003

10.1039/C8CS00823J

10.1002/adma.201802061

10.1002/advs.201901211

10.1021/acsnano.8b00516

10.1002/anie.201409400

Kettiger H., 2013, Int. J. Nanomed., 8, 3255

10.1002/anie.201605168

10.1016/j.chempr.2018.02.012

10.1038/nrc3038

10.1073/pnas.0803090105

Karczmar G. S., 1992, Cancer Res., 52, 71

10.1158/2159-8290.CD-13-0565

10.1016/j.ccr.2006.04.023

10.1073/pnas.94.13.6658

10.1016/j.molcel.2017.05.020

10.1016/j.molcel.2016.04.009

10.1016/j.cell.2010.01.028

10.1038/nrd.2017.22

10.1038/45257

10.1038/26506

10.1016/j.cell.2009.05.023

10.1002/1873-3468.12979

10.1021/acs.chemrev.8b00626

10.1021/ja01197a034

10.1038/235050a0

10.1002/ijc.26420