Augmented reality in open surgery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Navab N, Traub J, Sielhorst T, Feuerstein M, Bichlmeier C (2007) Action- and workflow-driven augmented reality for computer-aided medical procedures. IEEE Comput Graph 27(5):10–14. https://doi.org/10.1109/Mcg.2007.117
Cutolo F (2017) Augmented reality in image-guided surgery. In: Lee N (ed) Encyclopedia of computer graphics and games. Springer, Cham, pp 1–11. https://doi.org/10.1007/978-3-319-08234-9_78-1
Vavra P, Roman J, Zonca P, Ihnat P, Nemec M, Kumar J, Habib N, El-Gendi A (2017) Recent development of augmented reality in surgery: a review. J Healthc Eng. https://doi.org/10.1155/2017/4574172
Cutolo F, Parchi PD, Ferrari V (2014) Video see through AR head-mounted display for medical procedures. In: 2014 IEEE international symposium on mixed and augmented reality (ISMAR), 10–12 Sept 2014, pp 393–396. https://doi.org/10.1109/ismar.2014.6948504
Kersten-Oertel M, Jannin P, Collins DL (2012) DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Trans Vis Comput Gr 18(2):332–352. https://doi.org/10.1109/Tvcg.2011.50
Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V (2017) Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 40(4):537–548. https://doi.org/10.1007/s10143-016-0732-9
Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in augmented reality. IEEE Comput Graph 21(6):34–47. https://doi.org/10.1109/38.963459
Bimber O, Raskar R (2006) Modern approaches to augmented reality. Paper presented at the ACM SIGGRAPH 2006 Courses, Boston, Massachusetts
Billinghurst M, Clark A, Lee G (2015) A survey of augmented reality. Found Trends Hum Comput Interact 8(2–3):73–272. https://doi.org/10.1561/1100000049
Borgmann H, Rodriguez Socarras M, Salem J, Tsaur I, Gomez Rivas J, Barret E, Tortolero L (2017) Feasibility and safety of augmented reality-assisted urological surgery using smartglass. World J Urol 35(6):967–972. https://doi.org/10.1007/s00345-016-1956-6
Sauer IM, Queisner M, Tang P, Moosburner S, Hoepfner O, Horner R, Lohmann R, Pratschke J (2017) Mixed reality in visceral surgery: development of a suitable workflow and evaluation of intraoperative use-cases. Ann Surg 266(5):706–712. https://doi.org/10.1097/SLA.0000000000002448
Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P (2016) Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg 40(2):419–426. https://doi.org/10.1007/s00268-015-3229-8
Marzano E, Piardi T, Soler L, Diana M, Mutter D, Marescaux J, Pessaux P (2013) Augmented reality-guided artery-first pancreatico-duodenectomy. J Gastrointest Surg 17(11):1980–1983. https://doi.org/10.1007/s11605-013-2307-1
Okamoto T, Onda S, Yasuda J, Yanaga K, Suzuki N, Hattori A (2015) Navigation surgery using an augmented reality for pancreatectomy. Dig Surg 32(2):117–123. https://doi.org/10.1159/000371860
Onda S, Okamoto T, Kanehira M, Fujioka S, Suzuki N, Hattori A, Yanaga K (2013) Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci 20(4):448–453. https://doi.org/10.1007/s00534-012-0582-y
Onda S, Okamoto T, Kanehira M, Suzuki F, Ito R, Fujioka S, Suzuki N, Hattori A, Yanaga K (2014) Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system. J Hepatobiliary Pancreat Sci 21(4):281–287. https://doi.org/10.1002/jhbp.25
KleinJan GH, van den Berg NS, van Oosterom MN, Wendler T, Miwa M, Bex A, Hendricksen K, Horenblas S, van Leeuwen FW (2016) Toward (hybrid) navigation of a fluorescence camera in an open surgery setting. J Nucl Med 57(10):1650–1653. https://doi.org/10.2967/jnumed.115.171645
van Oosterom MN, Meershoek P, KleinJan GH, Hendricksen K, Navab N, van de Velde CJH, van der Poel HG, van Leeuwen FWB (2018) Navigation of fluorescence cameras during soft tissue surgery—is it possible to use a single navigation setup for various open and laparoscopic urological surgery applications? J Urol 199(4):1061–1068. https://doi.org/10.1016/j.juro.2017.09.160
Okamoto T, Onda S, Matsumoto M, Gocho T, Futagawa Y, Fujioka S, Yanaga K, Suzuki N, Hattori A (2013) Utility of augmented reality system in hepatobiliary surgery. J Hepatobiliary Pancreat Sci 20(2):249–253. https://doi.org/10.1007/s00534-012-0504-z
Tang R, Ma L, Xiang C, Wang X, Li A, Liao H, Dong J (2017) Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: a case report. Medicine (Baltimore) 96(37):e8083. https://doi.org/10.1097/MD.0000000000008083
Ferrari V, Megali G, Troia E, Pietrabissa A, Mosca F (2009) A 3-D mixed-reality system for stereoscopic visualization of medical dataset. IEEE T Bio Med Eng 56(11):2627–2633. https://doi.org/10.1109/Tbme.2009.2028013
Gavaghan KA, Peterhans M, Oliveira-Santos T, Weber S (2011) A portable image overlay projection device for computer-aided open liver surgery. IEEE Trans Biomed Eng 58(6):1855–1864. https://doi.org/10.1109/TBME.2011.2126572
Kersten-Oertel M, Jannin P, Collins DL (2010) DVV: towards a taxonomy for mixed reality visualization in image guided surgery. Med Imaging Augmented Reality 6326:334–343
Cutolo F, Freschi C, Mascioli S, Parchi P, Ferrari M, Ferrari V (2016) Robust and accurate algorithm for wearable stereoscopic augmented reality with three indistinguishable markers. Electronics 5(3):59
Navab N, Heining SM, Traub J (2010) Camera augmented mobile C-Arm (CAMC): calibration, accuracy study, and clinical applications. IEEE T Med Imaging 29(7):1412–1423. https://doi.org/10.1109/Tmi.2009.2021947
Marmulla R, Hoppe H, Muhling J, Eggers G (2005) An augmented reality system for image-guided surgery. Int J Oral Maxillofac Surg 34(6):594–596. https://doi.org/10.1016/j.ijom.2005.05.004
Haouchine N, Dequidt J, Berger MO, Cotin S (2013) Deformation-based augmented reality for hepatic surgery. Stud Health Technol Inf 184:182–188
Peterhans M, vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, Weber S (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot Comput Assist Surg MRCAS 7(1):7–16. https://doi.org/10.1002/rcs.360
Rolland JP, Holloway RL, Fuchs H (1994) A comparison of optical and video see-through head-mounted displays. P Soc Photo Opt Ins 2351:293–307
Cutolo F, Fontana U, Ferrari V (2018) Perspective Preserving Solution for Quasi-Orthoscopic Video See-Through HMDs. Technologies. https://doi.org/10.3390/technologies6010009
Ferrari V, Viglialoro RM, Nicoli P, Cutolo F, Condino S, Carbone M, Siesto M, Ferrari M (2016) Augmented reality visualization of deformable tubular structures for surgical simulation. Int J Med Robot Comput Assist Surg MRCAS 12(2):231–240. https://doi.org/10.1002/rcs.1681
Viglialoro RM, Condino S, Gesi M, Ferrari M, Ferrari V (2014) Augmented reality simulator for laparoscopic cholecystectomy training. In: De Paolis LT, Mongelli A (eds) Augmented and virtual reality. Springer, Cham, pp 428–433. https://doi.org/10.1007/978-3-319-13969-2_33
Suenaga H, Tran HH, Liao H, Masamune K, Dohi T, Hoshi K, Takato T (2015) Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. BMC Med Imaging. https://doi.org/10.1186/s12880-015-0089-5
Wang JC, Suenaga H, Yang LJ, Kobayashi E, Sakuma I (2017) Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Robot Comp. https://doi.org/10.1002/Rcs.1754