Dữ liệu siêu âm tăng cường cho học máy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
Aldrin, J., Achenbach, J., Andrew, G., P’an, C., Grills, B., Mullis, R., Spencer, F., Golis, M.: Case study for the implementation of an automated ultrasonic technique to detect fatigue cracks in aircraft weep holes. Mater. Eval. 59(11), 1313–1319 (2001)
Annis, C.: Mil-hdbk-1823a, nondestructive evaluation system reliability assessment. Tech. Rep. (2009). http://www.statisticalengineering.com/mh1823/MIL-HDBK-1823A(2009).pdf
ASTM: Standard practice for probability of detection analysis for hit/miss data. ASTM E2862-12. American Society for Testing and Materials, West Conshohocken (2012)
ASTM: Standard practice for probability of detection analysis for â versus a data. ASTM E3023-15. American Society for Testing and Materials, West Conshohocken (2015)
Bansal, M., Krizhevsky, A., Ogale, A.S.: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. CoRR (2018). arXiv:1812.03079
Chen, C.H., Lee, G.G.: Neural networks for ultrasonic NDE signal classification using time-frequency analysis. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp 493–496 (1993)
Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications, Greenwich (2017)
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.195
Chollet, F., et al.: Keras (2015). https://keras.io
Cruz, F.C., Simas Filho, E.F., Albuquerque, M.C., Silva, I.C., Farias, C.T., Gouvea, L.L.: Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing. Ultrasonics 73, 1–8 (2017). https://doi.org/10.1016/j.ultras.2016.08.017
Dorafshan, S., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031–1045 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.011
Fei, C., Han, Z., Dong, J.: An ultrasonic flaw-classification system with wavelet-packet decomposition, a mutative scale chaotic genetic algorithm, and a support vector machine and its application to petroleum-transporting pipelines. Russ. J. Nondestruct. Test. 42(3), 190–197 (2006). https://doi.org/10.1134/s1061830906030077
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR (2015). arXiv:1502.03167
Kahrobaee, S., Haghighi, M.S., Akhlaghi, I.A.: Improving nondestructive characterization of dual phase steels using data fusion. J. Magn. Magn. Mater. 458, 317–326 (2018). https://doi.org/10.1016/j.jmmm.2018.03.049
Koskinen, T., Virkkunen, I., Papula, S., Sarikka, T., Haapalainen, J.: Producing a pod curve with emulated signal response data. Insight 60(1), 42–48 (2018). https://doi.org/10.1784/insi.2018.60.1.42
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019). https://doi.org/10.1038/s41467-019-08987-4
Liu, S., Huang, J.H., Sung, J., Lee, C.: Detection of cracks using neural network and computational mechanics. Comput. Methods Appl. Mech. Eng. 191, 2831–2845 (2002)
Marcus, G.: Deep learning: a critical appraisal. CoRR (2018). arXiv:1801.00631
Masnata, A., Sunser, M.: Neural network classification of flaws detected by ultrasonic means. NDT & E Int. 29(2), 87–93 (1996)
Meng, M., Chua, Y.J., Wouterson, E., Ong, C.P.K.: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 257, 128–135 (2017). https://doi.org/10.1016/j.neucom.2016.11.066
Munir, N., Kim, H.J., Park, J., Song, S.J., Kang, S.S.: Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics (2018). https://doi.org/10.1016/j.ultras.2018.12.001
Munir, N., Kim, H.J., Song, S.J., Kang, S.S.: Investigation of deep neural network with drop out for ultrasonic flaw classification in weldments. J. Mech. Sci. Technol. 32(7), 3073–3080 (2018). https://doi.org/10.1007/s12206-018-0610-1
Sambath, S., Nagaraj, P., Selvakumar, N.: Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Nondestruct. Eval. 30(1), 20–28 (2010). https://doi.org/10.1007/s10921-010-0086-0
Shipway, N.J., Barden, T.J., Huthwaite, P., Lowe, M.J.S.: Automated defect detection for fluorescent penetrant inspection using random forest. NDT & E Int. 101, 113–123 (2019). https://doi.org/10.1016/j.ndteint.2018.10.008
Silva, L.C., Simas Filho, E.F., Albuquerque, M.C., Silva, I.C., Farias, C.T.: Segmented analysis of time-of-flight diffraction ultrasound for flaw detection in welded steel plates using extreme learning machines. Ultrasonics 102, 106057 (2020). https://doi.org/10.1016/j.ultras.2019.106057
Svahn, P.H., Virkkunen, I., Zettervall, T., Snögren, D.: The use of virtual flaws to increase flexibility of qualification. In: 12th European Conference on Non-Destructive Testing (ECNDT 2018), NDT.net, no. 8 in The e-Journal of Nondestructive Testing (2018)
Tong, Z., Gao, J., Zhang, H.: Innovative method for recognizing subgrade defects based on a convolutional neural network. Constr. Build. Mater. 169, 69–82 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.081
Udpa, L., Ramuhalli, P.: Steam generator management program: Automated analysis of array probe eddy current data. Tech. Rep. 1018559, EPRI, Palo Alto, CA (2009)
Virkkunen, I., Ylitalo, M.: Practical experiences in pod determination for airframe et inspection. In: International Symposium on NDT in Aerospace, 03-11-2016–05-11-2016 (2016)
Virkkunen, I., Miettinen, K., Packalén, T.: Virtual flaws for nde training and qualification. In: 11th European Conference on Non-Destructive Testing (ECNDT 2014) (2014)
Virkkunen, I., Rönneteg, U., Grybäck, T., Emilsson, G., Miettinen, K.: Feasibility study of using eflaws on qualification of nuclear spent fuel disposal canister inspection. http://www.12thnde.com. In: International Conference on Non Destructive Evaluation in Relation to Structural Integrity for Nuclear and Pressurized Components, 04-10-2016–06-10-2016 (2016)
Virkkunen, I., Haapalainen, J., Papula, S., Sarikka, T., Kotamies, J., Hänninen, H.: Effect of feedback and variation on inspection reliability. In: 7th European-American Workshop on Reliability of NDE, German Society for Non-Destructive Testing (2017). https://www.ndt.net/article/reliability2017/papers/12.pdf
Yi, W., Is, Yun: The defect detection and non-destructive evaluation in weld zone of austenitic stainless steel 304 using neural network-ultrasonic wave. KSMME Ent. J. 12(6), 1150–1161 (1998)
Zeiler, M.D.: Adadelta: an adaptive learning rate method (2012). arXiv:1212.5701
Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579