Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahveninen, J., Huang, S., Nummenmaa, A., Belliveau, J. W., Hung, A.-Y., Jääskeläinen, I. P., & Raij, T. (2013). Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nature Communications, 4, 2585.
Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., & Belliveau, J. W. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 103, 14608–14613.
Akeroyd, M. A. (2010). The effect of hearing-aid compression on judgments of relative distance. The Journal of the Acoustical Society of America, 127, 9–12.
Akeroyd, M. A., Gatehouse, S., & Blaschke, J. (2007). The detection of differences in the cues to distance by elderly hearing-impaired listeners. The Journal of the Acoustical Society of America, 121, 1077–1089.
Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.
Alais, D., & Carlile, S. (2005). Synchronizing to real events: Subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proceedings of the National Academy of Sciences of the United States of America, 102, 2244–2247.
Altmann, C. F., Ono, K., Callan, A., Matsuhashi, M., Mima, T., & Fukuyama, H. (2013). Environmental reverberation affects processing of sound intensity in right temporal cortex. European Journal of Neuroscience, 38, 3210–3220.
Anderson, P. W., & Zahorik, P. (2014). Auditory/visual distance estimation: Accuracy and variability. Frontiers in Psychology, 5, 1097.
Ashmead, D. H., Clifton, R. K., & Perris, E. E. (1987). Precision of auditory localization in human infants. Developmental Psychology, 23, 641–647.
Ashmead, D. H., Davis, D. L., & Northington, A. (1995). Contribution of listeners' approaching motion to auditory distance perception. Journal of Experimental Psychology: Human Perception and Performance, 21, 239–256.
Ashmead, D. H., LeRoy, D., & Odom, R. D. (1990). Perception of the relative distances of nearby sound sources. Attention and Psychophysics, 47, 326–331.
Ashmead, D. H., Wall, R. S., Eaton, S. B., Ebinger, K. A., Snook-Hill, M., Guth, D. A., & Yang, X. (1998). Echolocation reconsidered: Using spatial variations in the ambient sound field to guide locomotion. Journal of Visual Impairment and Blindness, 92, 615–632.
Aytekin, M., Moss, C. F., & Simon, J. Z. (2008). A sensorimotor approach to sound localization. Neural Computation, 20, 603–635.
Bavelier, D., Dye, M. W., & Hauser, P. C. (2006). Do deaf individuals see better? Trends in Cognitive Sciences, 10, 512–518.
Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: MIT.
Bronkhorst, A. W. (2015). The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, and Psychophysics, 77, 1465–1487.
Bronkhorst, A. W., & Houtgast, T. (1999). Auditory distance perception in rooms. Nature, 397, 517–520.
Brungart, D. S. (1999). Auditory localization of nearby sources III. Stimulus effects. The Journal of the Acoustical Society of America, 106, 3589–3602.
Brungart, D. S., Durlach, N. I., & Rabinowitz, W. M. (1999). Auditory localization of nearby sources II. Localization of a broadband source. The Journal of the Acoustical Society of America, 106, 1956–1968.
Brungart, D. S., & Rabinowitz, W. M. (1999). Auditory localization of nearby sources. Head-related transfer functions. The Journal of the Acoustical Society of America, 106, 1465–1479.
Brungart, D. S., & Scott, K. R. (2001). The effects of production and presentation level on the auditory distance perception of speech. The Journal of the Acoustical Society of America, 110, 425–440.
Bull, D., Eilers, R. E., & Oller, D. K. (1984). Infants’ discrimination of intensity variation in multisyllabic stimuli. The Journal of the Acoustical Society of America, 76, 13–17.
Butler, R. A., Levy, E. T., & Neff, W. D. (1980). Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance, 6, 745–750.
Calamia, P. T., & Hixson, E. L. (1997). Measurement of the head‐related transfer function at close range. The Journal of the Acoustical Society of America, 102, 3117.
Calcagno, E. R., Abregú, E. L., Eguía, M. C., & Vergara, R. (2012). The role of vision in auditory distance perception. Perception, 41, 175–192.
Canzoneri, E., Magosso, E., & Serino, A. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humans. PloS One, 7, e44306.
Cappe, C., Thelen, A., Romei, V., Thut, G., & Murray, M. M. (2012). Looming signals reveal synergistic principles of multisensory integration. The Journal of Neuroscience, 32, 1171–1182.
Catic, J., Santurette, S., Buchholz, J. M., Gran, F., & Dau, T. (2013). The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America, 134, 1232–1241.
Chan, C. C. H., Wong, A. W. K., Ting, K. H., Whitfield‐Gabrieli, S., He, J., & Lee, T. (2012). Cross auditory‐spatial learning in early‐blind individuals. Human Brain Mapping, 33, 2714–2727.
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and two ears. The Journal of the Acoustical Society of America, 25, 975–979.
Cheyne, H. A., Kalgaonkar, K., Clements, M., & Zurek, P. (2009). Talker-to-listener distance effects on speech production and perception. The Journal of the Acoustical Society of America, 126, 2052–2060.
Clifton, R. K., Perris, E. E., & Bullinger, A. (1991). Infants' perception of auditory space. Developmental Psychology, 27, 187–197.
Cochran, P., Throop, J., & Simpson, W. (1968). Estimation of distance of a source of sound. American Journal of Psychology, 81, 198–206.
Coleman, P. D. (1962). Failure to localize the source distance of an unfamiliar sound. The Journal of the Acoustical Society of America, 34, 345–346.
Coleman, P. D. (1963). An analysis of cues to auditory depth perception in free space. Psychological Bulletin, 60, 302–315.
Coleman, P. D. (1968). Dual role of frequency spectrum in determination of auditory distance. Journal of the Acoustical Society of America, 44, 631–632.
Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343–358.
Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: Comparison of three psychophysical methods. The American Journal of Psychology, 98, 119–144.
De Coensel, B., Nilsson, M. E., Brown, A., & Botteldooren, D. (2012). Dwelling insulation as prior information in auditory distance perception of moving trains. Paper presented at the 9th European Conference on Noise Control (Euronoise-2012), Prague, Czech Republic
De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppens, A., & Veraart, C. (1999). Changes in occipital cortex activity in early blind humans using a sensory substitution device. Brain Research, 826, 128–134.
Després, O., Candas, V., & Dufour, A. (2005). Auditory compensation in myopic humans: Involvement of binaural, monaural, or echo cues? Brain Research, 1041, 56–65.
Doucet, M. E., Guillemot, J. P., Lassonde, M., Gagne, J. P., Leclerc, C., & Lepore, F. (2005). Blind subjects process auditory spectral cues more efficiently than sighted individuals. Experimental Brain Research, 160, 194–202.
Duda, R. O., & Martens, W. L. (1998). Range dependence of the response of a spherical head model. The Journal of the Acoustical Society of America, 104, 3048–3058.
Dufour, A., & Gérard, Y. (2000). Improved auditory spatial sensitivity in near-sighted subjects. Cognitive Brain Research, 10, 159–165.
Edwards, A. S. (1955). Accuracy of auditory depth perception. The Journal of General Psychology, 52, 327–329.
Eriksson, A., & Traunmüller, H. (2002). Perception of vocal effort and distance from the speaker on the basis of vowel utterances. Perception and Psychophysics, 64, 131–139.
Farnè, A., & Làdavas, E. (2002). Auditory peripersonal space in humans. Journal of Cognitive Neuroscience, 14, 1030–1043.
Fontana, F., & Rocchesso, D. (2008). Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception (TAP), 5, 16.
Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure level as an auditory distance cue. British Journal of Developmental Psychology, 19, 1–10.
Gagnon, K. T., Geuss, M. N., & Stefanucci, J. K. (2013). Fear influences perceived reaching to targets in audition, but not vision. Evolution and Human Behavior, 34, 49–54.
Gamble, E. A. (1909). Intensity as a criterion in estimating the distance of sounds. Psychological Review, 16, 415–426.
Gardner, M. B. (1968). Proximity image effect in sound localization. The Journal of the Acoustical Society of America, 43, 163.
Gardner, M. B. (1969). Distance estimation of 0° or apparent 0°‐oriented speech signals in anechoic space. The Journal of the Acoustical Society of America, 45, 47–53.
Ghazanfar, A. A., Neuhoff, J. G., & Logothetis, N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 99, 15755–15757.
Gordon, M. S., Russo, F. A., & MacDonald, E. (2013). Spectral information for detection of acoustic time to arrival. Attention, Perception, and Psychophysics, 75, 738–750.
Gori, M., Sandini, G., Martinoli, C., & Burr, D. C. (2014). Impairment of auditory spatial localization in congenitally blind human subjects. Brain, 137, 288–293.
Gougoux, F., Lepore, F., Lassonde, M., Voss, P., Zatorre, R. J., & Belin, P. (2004). Pitch discrimination in the early blind. Nature, 430, 309–309.
Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P., & Lepore, F. (2005). A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals. PLoS Biology, 3, 324–333.
Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845–859.
Graziano, M. S. A., & Gross, C. G. (1998). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8, 195–201.
Graziano, M. S. A., Reiss, L. A. J., & Gross, C. G. (1999). A neuronal representation of the location of nearby sounds. Nature, 397, 428–430.
Greene, D. C. (1968). Comment on perception of the range of a sound-source of unknown strength. Journal of the Acoustical Society of America, 44, 634.
Guth, D. A., Long, R. G., Emerson, R. S. W., Ponchillia, P. E., & Ashmead, D. H. (2013). Blind and sighted pedestrians’ road-crossing judgments at a single-lane roundabout. Human Factors: The Journal of the Human Factors and Ergonomics Society, 55, 632–642.
Hall, D. A., & Moore, D. R. (2003). Auditory neuroscience: The salience of looming sounds. Current Biology, 13, 91–93.
Hartley, R. V. L., & Fry, T. C. (1921). The Binaural Location of Pure Tones. Physical Review, 18, 431–442.
Hartmann, D. (1983). Localization of sound in rooms. The Journal of the Acoustical Society of America, 74, 1380–1391.
Hartmann, W. M., & Wittenberg, A. (1996). On the externalization of sound images. The Journal of the Acoustical Society of America, 99, 3678–3688.
Hellier, E., Edworthy, J., Weedon, B., Walters, K., & Adams, A. (2002). The perceived urgency of speech warnings: Semantics versus acoustics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 44, 1–17.
Heron, J., Whitaker, D., McGraw, P. V., & Horoshenkov, K. V. (2007). Adaptation minimizes distance-related audiovisual delays. Journal of Vision, 7, 1–8.
Higuchi, T., Imanaka, K., & Patla, A. E. (2006). Action-oriented representation of peripersonal and extrapersonal space: Insights from manual and locomotor actions. Japanese Psychological Research, 48, 126–140.
Hirsch, H. R. (1968). Perception of the range of a sound source of unknown strength. The Journal of the Acoustical Society of America, 43, 373–374.
Hládek, L., Le Dantec, C. C., Kopčo, N., & Seitz, A. (2013). Ventriloquism effect and aftereffect in the distance dimension. Proceedings of Meetings on Acoustics, 19, 050042.
Holt, R. E., & Thurlow, W. R. (1969). Subject orientation and judgment of distance of a sound source. The Journal of the Acoustical Society of America, 46, 1584–1585.
Hoover, A. E., Harris, L. R., & Steeves, J. K. (2012). Sensory compensation in sound localization in people with one eye. Experimental Brain Research, 216, 565–574.
Hughes, B. (2001). Active artificial echolocation and the nonvisual perception of aperture passability. Human Movement Science, 20, 371–400.
Jackson, R. E. (2009). Individual differences in distance perception. Proceedings of the Royal Society B: Biological Sciences, 276, 1665–1669.
Jesteadt, W., Wier, C. C., & Green, D. M. (1977). Intensity discrimination as a function of frequency and sensation level. The Journal of the Acoustical Society of America, 61, 169–177.
Jetzt, J. J. (1979). Critical distance measurement of rooms from the sound energy spectral response. The Journal of the Acoustical Society of America, 65, 1204–1211.
Johnson, C. J., Pick, H. L., Jr., Siegel, G. M., Ciccciarelli, A. W., & Garber, S. R. (1981). Effects of interpersonal distance on children’s vocal intensity. Child Development, 52, 721–723.
Joris, P., Schreiner, C., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577.
Kearney, G., Gorzel, M., Rice, H., & Boland, F. (2012). Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica, 98, 61–71.
Keating, P., & King, A. J. (2013). Developmental plasticity of spatial hearing following asymmetric hearing loss: Context-dependent cue integration and its clinical implications. Frontiers in Systems Neuroscience, 7, 123.
Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005). The advantage of knowing where to listen. The Journal of the Acoustical Society of America, 118, 3804–3815.
Kim, H. Y., Suzuki, Y., Takane, S., & Sone, T. (2001). Control of auditory distance perception based on the auditory parallax model. Applied Acoustics, 62, 245–270.
Kim, D. O., Zahorik, P., Carney, L. H., Bishop, B. B., & Kuwada, S. (2015). Auditory distance coding in rabbit midbrain neurons and human perception: Monaural amplitude modulation depth as a cue. The Journal of Neuroscience, 35, 5360–5372.
Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2013a). An assessment of virtual auditory distance judgements among blind and sighted listeners. Proceedings of Meetings on Acoustics, 19, 050043.
Kolarik, A. J., Cirstea, S., & Pardhan, S. (2013b). Discrimination of virtual auditory distance using level and direct-to-reverberant ratio cues. The Journal of the Acoustical Society of America, 134, 3395–3398.
Kolarik, A. J., Cirstea, S., & Pardhan, S. (2013c). Evidence for enhanced discrimination of virtual auditory distance among blind listeners using level and direct-to-reverberant cues. Experimental Brain Research, 224, 623–633.
Kolarik, A. J., Pardhan, S., Cirstea, S., & Moore, B. C. J. (2013d). Using acoustic information to perceive room size: Effects of blindness, room reverberation time, and stimulus. Perception, 42, 985–990.
Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2014a). A summary of research investigating echolocation abilities of blind and sighted humans. Hearing Research, 310, 60–68.
Kolarik, A. J., Timmis, M. A., Cirstea, S., & Pardhan, S. (2014b). Sensory substitution information informs locomotor adjustments when walking through apertures. Experimental Brain Research, 232, 975–984.
Kopčo, N., Huang, S., Belliveau, J. W., Raij, T., Tengshe, C., & Ahveninen, J. (2012). Neuronal representations of distance in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, 11019–11024.
Kopčo, N., & Shinn-Cunningham, B. G. (2003). Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America, 114, 2856–2870.
Kopčo, N., & Shinn-Cunningham, B. G. (2011). Effect of stimulus spectrum on distance perception for nearby sources. The Journal of the Acoustical Society of America, 130, 1530–1541.
Krishna, B. S., & Semple, M. N. (2000). Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology, 84, 255–273.
Kuwada, S., Bishop, B., & Kim, D. O. (2014). Azimuth and envelope coding in the inferior colliculus of the unanesthetized rabbit: Effect of reverberation and distance. Journal of Neurophysiology, 112, 1340–1355.
Lai, H. H., & Chen, Y. C. (2006). A study on the blind's sensory ability. International Journal of Industrial Ergonomics, 36, 565–570.
Larsen, E., Iyer, N., Lansing, C. R., & Feng, A. S. (2008). On the minimum audible difference in direct-to-reverberant energy ratio. The Journal of the Acoustical Society of America, 124, 450–461.
Lessard, N., Pare, M., Lepore, F., & Lassonde, M. (1998). Early-blind human subjects localize sound sources better than sighted subjects. Nature, 395, 278–280.
Lewald, J. (2002a). Opposing effects of head position on sound localization in blind and sighted human subjects. European Journal of Neuroscience, 15, 1219–1224.
Lewald, J. (2013). Exceptional ability of blind humans to hear sound motion: Implications for the emergence of auditory space. Neuropsychologia, 51, 181–186.
Litovsky, R. Y., & Clifton, R. K. (1992). Use of sound‐pressure level in auditory distance discrimination by 6‐month‐old infants and adults. The Journal of the Acoustical Society of America, 92, 794–802.
Little, A. D., Mershon, D. H., & Cox, P. H. (1992). Spectral content as a cue to perceived auditory distance. Perception, 21, 405–416.
Loomis, J. M., Klatzky, R. L., Philbeck, J. W., & Golledge, R. G. (1998). Assessing auditory distance perception using perceptually directed action. Attention, Perception, & Psychophysics, 60, 966–980.
Macé, M. J. M., Dramas, F., & Jouffrais, C. (2012). Reaching to sound accuracy in the peri-personal space of blind and sighted humans. In K. Miesenberger, A. Karshmer, P. Penaz, & W. W. Zagler (Eds.), Computers Helping People with Special Needs: 13th International Conference, ICCHP 2012 (pp. 636–643). Linz: Springer-Verlag.
Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., Namer-Furstenberg, R., & Amedi, A. (2014). The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation. Multisensory Research, 27, 379–397.
Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., & Amedi, A. (2013). Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the "EyeCane": Feasibility study. PloS one, 8, e72555.
Mathiak, K., Hertrich, I., Kincses, W. E., Riecker, A., Lutzenberger, W., & Ackermann, H. (2003). The right supratemporal plane hears the distance of objects: Neuromagnetic correlates of virtual reality. Neuroreport, 14, 307–311.
McGregor, P., Horn, A. G., & Todd, M. A. (1985). Are familiar sounds ranged more accurately? Perceptual and Motor Skills, 61, 1082.
Meijer, P. B. L. (1992). An experimental system for auditory image representations. IEEE Transactions on Biomedical Engineering, 39, 112–121.
Mershon, D. H., Ballenger, W. L., Little, A. D., McMurtry, P. L., & Buchanan, J. L. (1989). Effects of room reflectance and background noise on perceived auditory distance. Perception, 18, 403–416.
Mershon, D. H., & Bowers, J. N. (1979). Absolute and relative cues for the auditory perception of egocentric distance. Perception, 8, 311–322.
Mershon, D. H., Desaulniers, D. H., Amerson, T. L., & Kiefer, S. A. (1980). Visual capture in auditory distance perception: Proximity image effect reconsidered. Journal of Auditory Research, 20, 129–136.
Mershon, D. H., & King, L. E. (1975). Intensity and reverberation as factors in the auditory perception of egocentric distance. Attention, Perception, & Psychophysics, 18, 409–415.
Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.
Miller, G. A. (1947). Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. The Journal of the Acoustical Society of America, 19, 609–619.
Molino, J. (1973). Perceiving the range of a sound source when the direction is known. The Journal of the Acoustical Society of America, 53, 1301–1304.
Moore, B. C. J. (2007). Cochlear Hearing Loss: Physiological, Psychological and Technical Issues (2nd ed.). Chichester: Wiley.
Moore, B. C. J. (2008). The choice of compression speed in hearing aids: Theoretical and practical considerations and the role of individual differences. Trends in Amplification, 12, 103–112.
Moore, D. R., & King, A. J. (1999). Auditory perception: The near and far of sound localization. Current Biology, 9, 361–363.
Morrongiello, B. A., & Fenwick, K. D. (1991). Infants' coordination of auditory and visual depth information. Journal of Experimental Child Psychology, 52, 277–296.
Morrongiello, B. A., Hewitt, K. L., & Gotowiec, A. (1991). Infants' discrimination of relative distance in the auditory modality: approaching versus receding sound sources. Infant Behavior and Development, 14, 187–208.
Musa-Shufani, S., Walger, M., von Wedel, H., & Meister, H. (2006). Influence of dynamic compression on directional hearing in the horizontal plane. Ear and Hearing, 27, 279–285.
Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: Mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–837.
Nelson, P. C., & Carney, L. H. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America, 116, 2173–2186.
Nielsen, S. H. (1993). Auditory distance perception in different rooms. Journal of the Audio Engineering Society, 41, 755–770.
Occelli, V., Spence, C., & Zampini, M. (2013). Auditory, tactile, and audiotactile information processing following visual deprivation. Psychological Bulletin, 139, 189–212.
Otani, M., Hirahara, T., & Ise, S. (2009). Numerical study on source-distance dependency of head-related transfer functions. The Journal of the Acoustical Society of America, 125, 3253–3261.
Parseihian, G., Jouffrais, C., & Katz, B. F. (2014). Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience, 8, 269.
Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48, 214–226.
Philbeck, J. W., & Mershon, D. H. (2002). Knowledge about typical source output influences perceived auditory distance. The Journal of the Acoustical Society of America, 111, 1980–1983.
Pickett, J. M. (1956). Effects of vocal force on the intelligibility of speech sounds. The Journal of the Acoustical Society of America, 28, 902–905.
Rand, K., Tarampi, M., Creem-Regehr, S. H., & Thompson, W. B. (2011). The importance of a visual horizon for distance judgments under severely degraded vision. Perception, 40, 143–154.
Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.
Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences, 97(Tian, B), 11800–11806.
Recanzone, G. H., & Cohen, Y. E. (2010). Serial and parallel processing in the primate auditory cortex revisited. Behavioural Brain Research, 206, 1–7.
Reichardt, W., & Schmidt, W. (1966). Die horbaren stufen des raumeindruckes bei Musik (The audible steps of spatial impression in music performances). Acustica, 17, 175–179.
Renier, L., Collignon, O., Poirier, C., Tranduy, D., Vanlierde, A., Bol, A., & De Volder, A. G. (2005). Cross-modal activation of visual cortex during depth perception using auditory substitution of vision. NeuroImage, 26, 573–580.
Richards, D. G., & Wiley, R. H. (1980). Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. The American Naturalist, 115, 381–399.
Riesz, R. (1933). The relationship between loudness and the minimum perceptible increment of intensity. The Journal of the Acoustical Society of America, 4, 211–216.
Roentgen, U. R., Gelderblom, G. J., Soede, M., & de Witte, L. P. (2009). The impact of electronic mobility devices for persons who are visually impaired: A systematic review of effects and effectiveness. Journal of Visual Impairment and Blindness, 103, 743–753.
Ronsse, L. M., & Wang, L. M. (2012). Effects of room size and reverberation, receiver location, and source rotation on acoustical metrics related to source localization. Acta Acustica united with Acustica, 98, 768–775.
Rowan, D., Papadopoulos, T., Edwards, D., Holmes, H., Hollingdale, A., Evans, L., & Allen, R. (2013). Identification of the lateral position of a virtual object based on echoes by humans. Hearing Research, 300, 56–65.
Russell, M. K., & Schneider, A. L. (2006). Sound source perception in a two-dimensional setting: Comparison of action and nonaction-based response tasks. Ecological Psychology, 18, 223–237.
Schenkman, B. N., & Nilsson, M. E. (2011). Human echolocation: Pitch versus loudness information. Perception, 40, 840–852.
Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival: Effects of modality, trajectory, and gender. Journal of Experimental Psychology: Human Perception and Performance, 16, 303–316.
Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., & Di Salle, F. (2002). Neural processing of auditory looming in the human brain. Current Biology, 12, 2147–2151.
Serino, A., Bassolino, M., Farnè, A., & Làdavas, E. (2007). Extended multisensory space in blind cane users. Psychological Science, 18, 642–648.
Serino, A., Canzoneri, E., & Avenanti, A. (2011). Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: An rTMS study. Journal of Cognitive Neuroscience, 23, 2956–2967.
Shinn-Cunningham, B. (2000). Learning reverberation: Considerations for spatial auditory displays. Paper presented at the Proceedings of the 2000 International Conference on Auditory Display, Atlanta.
Shinn-Cunningham, B. G., Kopčo, N., & Martin, T. J. (2005). Localizing nearby sound sources in a classroom: Binaural room impulse responses. The Journal of the Acoustical Society of America, 117, 3100–3115.
Shinn-Cunningham, B. G., Santarelli, S., & Kopco, N. (2000). Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America, 107, 1627–1636.
Siegel, E. H., & Stefanucci, J. K. (2011). A little bit louder now: Negative affect increases perceived loudness. Emotion, 11, 1006–1011.
Simon, H. J., Divenyi, P. L., & Lotze, A. (2002). Lateralization of narrow-band noise by blind and sighted listeners. Perception, 31, 855–873.
Simon, H. J., & Levitt, H. (2007). Effect of dual sensory loss on auditory localization: Implications for intervention. Trends in Amplification, 11, 259–272.
Simpson, W., & Stanton, L. D. (1973). Head movement does not facilitate perception of the distance of a source of sound. American Journal of Psychology, 86, 151–159.
Sinnott, J. M., & Aslin, R. N. (1985). Frequency and intensity discrimination in human infants and adults. The Journal of the Acoustical Society of America, 78, 1986–1992.
Sohl-Dickstein, J., Teng, S., Gaub, B. M., Rodgers, C. C., Li, C., DeWeese, M. R., & Harper, N. S. (2014). A device for human ultrasonic echolocation. IEEE Transactions on Biomedical Engineering, 1, 1–7.
Speigle, J. M., & Loomis, J. M. (1993). Auditory distance perception by translating observrs. Paper presented at the IEEE Symposium on Research Frontiers in Virtual Reality, Washington, DC.
Spiousas, I., Etchemendy, P. E., Vergara, R. O., Calcagno, E. R., & Eguia, M. C. (2015). An auditory illusion of proximity of the source induced by sonic crystals. PloS one, 10(7), e0133271.
Stefanucci, J., Gagnon, K., Tompkins, C., & Bullock, K. (2012). Plunging into the pool of death: Imagining a dangerous outcome influences distance perception. Perception, 41, 1–11.
Stewart, G. (1911). The acoustic shadow of a rigid sphere with certain applications in architectural acoustics and audition. Physical Review, 33, 467–479.
Stoffregen, T. A., & Pittenger, J. B. (1995). Human echolocation as a basic form of perception and action. Ecological Psychology, 7, 181–216.
Strybel, T. Z., & Perrott, D. R. (1984). Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. The Journal of the Acoustical Society of America, 76, 318–320.
Sugita, Y., & Suzuki, Y. (2003). Audiovisual perception: Implicit estimation of sound-arrival time. Nature, 421, 911.
Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: Older adults perceive walkable extents as farther. Experimental Brain Research, 226, 383–391.
Tao, Q., Chan, C. C. H., Luo, Y., Li, J., Ting, K., Wang, J., & Lee, T. M. C. (2013). How does experience modulate auditory spatial processing in individuals with blindness? Brain Topography, 1-14.
Tarquinio, N., Zelazo, P. R., & Weiss, M. J. (1990). Recovery of neonatal head turning to decreased sound pressure level. Developmental Psychology, 26, 752–758.
Teghtsoonian, R., Teghtsoonian, M., & Canévet, G. (2005). Sweep-induced acceleration in loudness change and the "bias for rising intensities". Perception and Psychophysics, 67, 699–712.
Teramoto, W., Sakamoto, S., Furune, F., Gyoba, J., & Suzuki, Y. (2012). Compression of auditory space during forward self-motion. PLoS One, 7, e39402.
Tooby, J., & Cosmides, L. (2008). The evolutionary psychology of the emotions and their relationship to internal regulatory variables. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (3rd ed., pp. 114–137). NY: Guilford.
van der Meer, A. L., Ramstad, M., & Van der Weel, F. (2008). Choosing the shortest way to mum: Auditory guided rotation in 6-to 9-month-old infants. Infant Behavior and Development, 31, 207–216.
von Békésy, G. (1938). Uber die entstehung der entfernungsempfindung beim horen (On the origin of the sensation of distance in hearing). Akustische Zeitschrift, 3, 21–31.
von Békésy, G. (1949). The moon illusion and similar auditory phenomena. American Journal of Psychology, 62, 540–552.
Voss, P., Collignon, O., Lassonde, M., & Lepore, F. (2010). Adaptation to sensory loss. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 308–328.
Voss, P., Lassonde, M., Gougoux, F., Fortin, M., Guillemot, J., & Lepore, F. (2004). Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Current Biology, 14, 1734–1738.
Voss, P., Lepore, F., Gougoux, F., & Zatorre, R. J. (2011). Relevance of spectral cues for auditory spatial processing in the occipital cortex of the blind. Frontiers in Psychology, 2, 48.
Voss, P., & Zatorre, R. J. (2012). Organization and reorganization of sensory-deprived cortex. Current Biology, 22, 168–173.
Walker-Andrews, A. S., & Lennon, E. M. (1985). Auditory-visual perception of changing distance by human infants. Child Development, 56, 544–548.
Wallmeier, L., & Wiegrebe, L. (2014). Ranging in human sonar: Effects of additional early reflections and exploratory head movements. PloS One, 9, e115363.
Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.
Wanet, M., & Veraart, C. (1985). Processing of auditory information by the blind in spatial localization tasks. Attention, Perception, & Psychophysics, 38, 91–96.
Warren, D. H., Welch, R. B., & McCarthy, T. J. (1981). The role of visual-auditory “compellingness” in the ventriloquism effect: Implications for transitivity among the spatial senses. Perception and Psychophysics, 30, 557–564.
Wightman, E. R., & Firestone, F. A. (1930). Binaural localization of pure tones. The Journal of the Acoustical Society of America, 2, 271–280.
Wisniewski, M. G., Mercado, E., Gramann, K., & Makeig, S. (2012). Familiarity with speech affects cortical processing of auditory distance cues and increases acuity. PLoS One, 7, e41025.
Zahorik, P. (2001). Estimating sound source distance with and without vision. Optometry and Vision Science, 78, 270–275.
Zahorik, P. (2002a). Assessing auditory distance perception using virtual acoustics. The Journal of the Acoustical Society of America, 111, 1832–1846.
Zahorik, P. (2002b). Direct-to-reverberant energy ratio sensitivity. The Journal of the Acoustical Society of America, 112, 2110–2117.
Zahorik, P., & Anderson, P. W. (2014). The role of amplitude modulation in auditory distance perception. Proceedings of Meetings on Acoustics, 21, 050006.
Zahorik, P., Brungart, D. S., & Bronkhorst, A. W. (2005). Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica, 91, 409–420.
Zahorik, P., & Kelly, J. W. (2007). Accurate vocal compensation for sound intensity loss with increasing distance in natural environments. The Journal of the Acoustical Society of America, 122, 143–150.
Zahorik, P., & Wightman, F. L. (2001). Loudness constancy with varying sound source distance. Nature Neuroscience, 4, 78–83.