Au–Ag binary alloys on n-GaAs substrates and effect of work functions on Schottky barrier height
Tóm tắt
In this study, I investigated the effect of work function (ϕm) of AuxAg1−x (x = 0, 0.22, 0.37, 0.71 and 1) on the Au–Ag/n-GaAs Schottky diode (SD) parameters. Ag, Au metals and three alloys with different compositions deposited on n-GaAs substrates by the thermal evaporation method. Surface morphologies of the samples were investigated by an atomic force microscope (AFM). Elemental compositions of Schottky contact metals were conducted by energy dispersive X-ray spectroscopy (EDX). Current–voltage (I–V) and capacitance–voltage (C–V) measurements were performed at room temperature. SD parameters such as barrier height (Φb0), ideality factor (n), series resistance (Rs), and interface state density (Dit) of the SD’s were calculated from the obtained I–V and C–V data. Experimental results showed that all calculated SD parameters depend on the alloy composition. The lowest mean barrier height value was found as 0.789 ± 0.022 eV for Au/n-GaAs SDs and the highest value was determined 0.847 ± 0.008 eV for Au0.71Ag0.29/n-GaAs SDs from I–V measurements. Weak dependencies of barrier height to ϕm existed and gap state parameter (S) determined as 0.0526. The S value was close to the Bardeen limit (S = 0) and indicates that the Fermi level was strongly pinned in Au–Ag/n-GaAs SDs. Also, main SD parameters like series resistance (Rs), ideality factor (n), reverse bias barrier height (ΦbRB), doping density (Nd) and density of interface states (Dit) were calculated via using different methods from I–V and C–V measurement results. Also, to determine the leakage current mechanism Poole–Frenkel emission (PFE) and Schottky emission (SE) models applied on reverse bias I–V data.
Tài liệu tham khảo
J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717 (1947)
A. Cowley, S. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965)
W. Schottky, On the semiconductor theory of blocking and point contact rectifiers (in German). Z. Angew. Phys. 113, 367–414 (1939)
W. Spitzer, C. Mead, Barrier height studies on metal-semiconductor systems. J. Appl. Phys. 34, 3061–3069 (1963)
W. Schottky, Semiconductor theory of the blocking layer (in German). Naturwissenschaften 26, 843 (1938)
N. Mott, Note on the contact between a metal and an insulator or semiconductor, in: Proceedings of the Cambridge Philosophical Society, (Cambridge Univ Press, 1938), pp. 568–572
E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)
R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014)
G. Myburg, F.D. Auret, W.E. Meyer, C.W. Louw, M.J. van Staden, Summary of Schottky barrier height data on epitaxially grown n- and p-GaAs. Thin Solid Films 325, 181–186 (1998)
S.G. Louie, J.R. Chelikowsky, M.L. Cohen, Ionicity and the theory of Schottky barriers. Phys. Rev. B 15, 2154–2162 (1977)
R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B 64, 205310 (2001)
S.M. Sze, K.K. Ng, Metal-Semiconductor Contacts (John Wiley & Sons Inc, New Jersey, 2006), p. 832
E. Bucher, S. Schulz, M.C. Lux-Steiner, P. Munz, U. Gubler, F. Greuter, Work function and barrier heights of transition metal silicides. Appl. Phys. A 40, 71–77 (1986)
J. Hu, K.C. Saraswat, H.S.P. Wong, Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts. J. Appl. Phys. 107, 063712 (2010)
N. Newman, M. Vanschilfgaarde, T. Kendelwicz, M.D. Williams, W.E. Spicer, Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces. Phys. Rev. B 33, 1146–1159 (1986)
M.C. Özdemir, Ö. Sevgili, I. Orak, A. Türüt, Determining the potential barrier presented by the interfacial layer from the temperature induced I-V characteristics in Al/p-Si Structure with native oxide layer. Mater. Sci. Semicond. Proc. 125, 105629 (2021)
K. Maeda, H. Ikoma, K. Sato, T. Ishida, Current-voltage characteristics and interface state density of GaAs Schottky-barrier. Appl. Phys. Lett. 62, 2560–2562 (1993)
A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys. 44, 302–347 (2020)
H. Hasegawa, H. Ohno, Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces. J. Vac. Sci. Technol. B 4, 1130–1138 (1986)
D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2, 599–603 (2012)
S. Küp, A. Taşer, İ Kanmaz, B. Güzeldir, M. Sağlam, Effects of Au-Ag and Au-Cu alloy ratios on the temperature dependent current-voltage characteristics of Au-Ag/n-GaAs/In and Au-Cu/n-GaAs/In Schottky diodes. Mater. Today Proc. 18, 1936–1945 (2019)
J.R. Waldrop, Electrical-properties of ideal metal contacts to GaAs - Schottky-barrier height. J. Vac. Sci. Technol. B 2, 445–448 (1984)
Ö. Güllü, M. Biber, S. Duman, A. Türüt, Electrical characteristics of the hydrogen pre-annealed Au/n-GaAs Schottky barrier diodes as a function of temperature. Appl. Surf. Sci. 253, 7246–7253 (2007)
F. Yiğiterol, H.H. Güllü, Ö. Bayraklı, D.E. Yıldız, Temperature-dependent electrical characteristics of Au/Si3N4/4H n-SiC MIS diode. J. Electron. Mater. 47, 2979–2987 (2018)
D.E. Yıldız, Electrical properties of Au–Cu/ZnO/p-Si diode fabricated by atomic layer deposition. J. Mater. Sci. 29, 17802–17808 (2018)
G.K. Reeves, H.B. Harrison, Obtaining the specific contact resistance from transmission-line model measurements. Electron Device Lett. 3, 111–113 (1982)
A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: electrical parameter calculation program (SeCLaS-PC). J. Circuits Syst. Comput. 29, 2050215 (2020)
A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: Measurement System and Instrument Control Program (SeCLaS-IC). MAPAN 35, 343–350 (2020)
S. Fain Jr., J. McDavid, Work-function variation with alloy composition: Ag-Au. Phys. Rev. B 9, 5099 (1974)
R. Ishii, K. Matsumura, A. Sakai, T. Sakata, Work function of binary alloys. Appl. Surf. Sci. 169–170, 658–661 (2001)
C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1996)
H.I. Chen, C.K. Hsiung, Y.I. Chou, Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique. Semicond. Sci. Technol. 18, 620–626 (2003)
A. Türüt, D.E. Yıldız, A. Karabulut, İ Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J. Mater. Sci. 31, 7839–7849 (2020)
A. Akkaya, L. Esmer, B.B. Kantar, H. Çetin, E. Ayyıldız, Effect of thermal annealing on electrical and structural properties of Ni/Au/n-GaN Schottky contacts. Microelectron. Eng. 130, 62–68 (2014)
J. Ahopelto, V.M. Airaksinen, E. Siren, H.M. Niemi, Fabrication of sub-100 nm GaAs columns by reactive ion etching using Au islands as etching mask. J. Vac. Sci. Technol. B 13, 161–162 (1995)
V.G. Weizer, N.S. Fatemi, The interaction of gold with gallium arsenide. J. Appl. Phys. 64, 4618–4623 (1988)
C. Messmer, J.C. Bilello, The surface energy of Si, GaAs, and GaP. J. Appl. Phys. 52, 4623–4629 (1981)
S. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981)
L. Huang, R. Geiod, D. Wang, Barrier inhomogeneities and interface states of metal/4H-SiC Schottky contacts. Jpn. J. Appl. Phys. 55, 124101 (2016)
A.K. Sinha, J.M. Poate, Effect of alloying behavior on the electrical characteristics of n-GaAs Schottky diodes metallized with W, Au, and Pt. Appl. Phys. Lett. 23, 666–668 (1973)
D. Eastman, Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 2, 1 (1970)
M. Soylu, F. Yakuphanoğlu, Analysis of barrier height inhomogeneity in Au/n-GaAs Schottky barrier diodes by Tung model. J. Alloys Compd. 506, 418–422 (2010)
H. Altuntaş, S. Altındal, S. Özçelik, H. Shtrikman, Electrical characteristics of Au/n-GaAs Schottky barrier diodes with and without SiO2 insulator layer at room temperature. Vacuum 83, 1060–1065 (2009)
S. Tunhuma, F. Auret, M. Legodi, M. Diale, The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes. Phys. B 480, 201–205 (2016)
A.F. Özdemir, A. Türüt, A. Kökce, The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from I-V-T characteristics. Semicond. Sci. Technol. 21, 298–302 (2006)
D. Korucu, A. Türüt, H. Efeoğlu, Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model. Phys. B 414, 35–41 (2013)
S. Arulkumaran, J. Arokiaraj, M. Udhayasankar, P. Santhanaraghavan, J. Kumar, P. Ramasamy, Investigations on Au, Ag, and Al Schottky diodes on liquid encapsulated Czochralski-Grown N-GaAs[100]. J. Electron. Mater. 24, 813–817 (1995)
J.R. Waldrop, Influence of S and Se on the Schottky-barrier height and interface chemistry of Au contacts to GaAs. J. Vac. Sci. Technol. B 3, 1197–1201 (1985)
O. Kahveci, A. Akkaya, E. Ayyıldız, A. Türüt, Comparison of yhe Ti/N-GaAs Schottky contacts’ parameters fabricated using DC magnetron sputtering and thermal evaporation. Surf. Rev. Lett. 24, 1750047 (2016)
S.W. Pang, G.A. Lincoln, R.W. McClelland, P.D. DeGraff, M.W. Geis, W.J. Piacentini, Effects of dry etching on GaAs. J. Vac. Sci. Technol. B 1, 1334–1337 (1983)
S. Guha, B.M. Arora, V.P. Salvi, High temperature annealing behaviour of Schottky barriers on GaAs with gold and gold-gallium contacts. Solid State Electron. 20, 431–432 (1977)
A.H. Kacha, M. Anani, B. Akkal, Z. Benamara, G. Monier, H. Mehdi, C. Varenne, A. Ndiaye, C. Robert-Goumet, Effect of metallic contacts diffusion on Au/GaAs and Au/GaN/GaAs SBDs electrical quality during their fabrication process. J. Alloys Compd. 876, 159596 (2021)
T. Nishimura, K. Kita, A. Toriumi, A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film. Appl. Phys. Express 1, 051406 (2008)
M.L. Cohen, Schottky and Bardeen limits for Schottky barriers. J. Vac. Sci. Technol. 16, 1135–1136 (1979)
R.T. Tung, Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 84, 6078–6081 (2000)
M. Ambrico, M. Losurdo, P. Capezzuto, G. Bruno, T. Ligonzo, L. Schiavulli, I. Farella, V. Augelli, A study of remote plasma nitrided nGaAs/Au Schottky barrier. Solid State Electron. 49, 413–419 (2005)
S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)
H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)
M. Sağlam, E. Ayyıldız, A. Gümüs, A. Türüt, H. Efeoğlu, S. Tüzemen, Series resistance calculation for the metal-insulator-semiconductor Schottky barrier diodes. Appl. Phys. A-Mater. 62, 269–273 (1996)
Ş Karataş, Temperature and voltage dependence C-V and G/ω–V characteristics in Au/n-type GaAs metal–semiconductor structures and the source of negative capacitance. J. Mater. Sci. 32, 707–716 (2021)
O. Çiçek, H. Durmuş, Ş Altındal, Identifying of series resistance and interface states on rhenium/n-GaAs structures using C-V–T and G/ω–V–T characteristics in frequency ranged 50 kHz to 5 MHz. J. Mater. Sci. 31, 704–713 (2020)
K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223–1224 (1986)
O. Güllü, S. Aydoğan, A. Türüt, Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semicond. Sci. Technol. 23, 075005 (2008)
S. Leung, T. Yoshiie, C.L. Bauer, A.G. Milnes, Electrical properties, structure, and phase morphology of Au-Ga alloy films codeposited on GaAs substrates. J. Electrochem. Soc. 132, 898–903 (1985)
S. Demirezen, E. Özavci, S. Altındal, The effect of frequency and temperature on capacitance/conductance-voltage (C/G-V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 23, 1–6 (2014)
V.R. Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)
D.E. Yıldız, M. Karakuş, L. Toppare, A. Cirpan, Leakage current by Frenkel-Poole emission on benzotriazole and benzothiadiazole based organic devices. Mater. Sci. Semicond. Process. 28, 84–88 (2014)
J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)
J.H. Werner, H.H. Güttler, Transport properties of inhomogeneous Schottky contacts. Phys. Scripta 1991, 258 (2007)
R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–138 (2001)
W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid State Electron. 23, 987–993 (1980)
E.H. Nicollian, J.R. Brews, Mos (Metal Oxide Semiconductor) Physics And Technology (Wiley-Interscience, New York, 1982)
D. Korucu, S. Altındal, T.S. Mammadov, S. Özçelik, The frequency dependent electrical characteristics of Sn/p-InP Schottky barrier diodes (SBDs). Optoelectron. Adv. Mater. 2, 525–529 (2008)