Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline
Tóm tắt
Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of spatiotemporal dynamics in brain activity observed in Alzheimer’s disease (AD). However, there are far fewer studies exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain activity within physiologically relevant frequency ranges. Higuchi’s fractal dimension is a widely used index for evaluating fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the entire range of temporal scales. In this study, we adapted Higuchi’s fractal algorithm into a method for investigating temporal-scale-specific fractal properties. We then compared the values of the temporal-scale-specific fractal dimension between healthy control (HC) and AD patient groups. Our data indicate that relative to the HC group, the AD group demonstrated reduced fractality at both slow and fast temporal scales. Moreover, we confirmed that the fractality at fast temporal scales correlates with cognitive decline. These properties might serve as a basis for a useful approach to characterizing temporal neural dynamics in AD or other neurodegenerative disorders.
Tài liệu tham khảo
Abásolo D, Escudero J, Hornero R, Espino P, Gómez C (2008) Fractal dimension of the EEG in Alzheimer’s disease. In: Encyclopedia of healthcare information systems, IGI Global, pp 603–609
Accardo A, Affinito M, Carrozzi M, Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77(5):339–350
Adeli H, Ghosh-Dastidar S, Dadmehr N (2005a) Alzheimer’s disease and models of computation: imaging, classification, and neural models. J Alzheimer’s Dis 7(3):187–199
Adeli H, Ghosh-Dastidar S, Dadmehr N (2005b) Alzheimer’s disease: models of computation and analysis of EEGs. Clin EEG Neurosci 36(3):131–140
Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211
Adeli H, Ghosh-Dastidar S, Dadmehr N (2008) A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci Lett 444(2):190–194
Ahmadlou M, Adeli H, Adeli A (2010) Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol 27(5):328–333
Ahmadlou M, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis Assoc Disorders 25(1):85–92
Al-nuaimi AH, Jammeh E, Sun L, Ifeachor E (2017) Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer’s disease. In: 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2017. IEEE, pp 2320–2324
Besthorn C, Sattel H, Geiger-Kabisch C, Zerfass R, Förstl H (1995) Parameters of EEG dimensional complexity in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 95(2):84–89
Bhat S, Acharya UR, Dadmehr N, Adeli H (2015) Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease. Eur Neurol 74(3–4):202–210
Buzsáki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15(4):264–278
Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel H, Faull R, Kwakowsky A (2018) The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem 146:649
Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’disease as a disconnection syndrome? Neuropsychol Rev 13(2):79–92
Escudero J, Abásolo D, Hornero R, Espino P, López M (2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Meas 27(11):1091
Fell J, Kaplan A, Darkhovsky B, Röschke J (1999) EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy. Acta Neurobiol Exp 60(1):87–108
Ferree TC, Hwa RC (2003) Power-law scaling in human EEG: relation to fourier power spectrum. Neurocomputing 52:755–761
Fletcher JM, Wennekers T (2016) From structure to activity: using centrality measures to predict neuronal activity. Int J Neural Syst 28:1750013
Folstein MF, Folstein SE, McHugh PR (1975) mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198
Friston KJ, Frith CD, Frackowiak RS, Turner R (1995) Characterizing dynamic brain responses with FMRI: a multivariate approach. Neuroimage 2(2):166–172
Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2010) Blood oxygen level-dependent signal variability is more than just noise. J Neurosci 30(14):4914–4921
Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2011) The importance of being variable. J Neurosci 31(12):4496–4503
Geminiani A, Casellato C, Antonietti A, DAngelo E, Pedrocchi A (2017) A multiple-plasticity spiking neural network embedded in a closed-loop control system to model cerebellar pathologies. Int J Neural Syst 28:1750017
Gómez C, Mediavilla Á, Hornero R, Abásolo D, Fernández A (2009) Use of the higuchi’s fractal dimension for the analysis of meg recordings from Alzheimer’s disease patients. Med Eng Phys 31(3):306–313
Govindpani K, Calvo-Flores Guzmán B, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A (2017) Towards a better understanding of GABAergic remodeling in Alzheimers disease. Int J Mol Sci 18(8):1813
Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Phys D Nonlinear Phenom 31(2):277–283
Ishii R, Canuet L, Aoki Y, Hata M, Iwase M, Ikeda S, Nishida K, Ikeda M (2017) Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 75(4):151–161
Jelles B, Van Birgelen J, Slaets J, Hekster R, Jonkman E, Stam C (1999) Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin Neurophysiol 110(7):1159–1167
Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115(7):1490–1505
Jeong J, Chae JH, Kim SY, Han SH (2001) Nonlinear dynamic analysis of the EEG in patients with Alzheimers disease and vascular dementia. J Clin Neurophysiol 18(1):58–67
Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 7. Cambridge University Press, Cambridge
Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R (2007) Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev 31(7):1003–1016
Mammone N, Bonanno L, Salvo SD, Marino S, Bramanti P, Bramanti A, Morabito FC (2017) Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in mci and ad patients. Int J Neural Syst 27(05):1750020
McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4(7):e1000106
Miller KJ, Sorensen LB, Ojemann JG, Den Nijs M (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5(12):e1000609
Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) Assessment of EEG dynamical complexity in Alzheimers disease using multiscale entropy. Clin Neurophysiol 121(9):1438–1446
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD (2014) Gabaergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimers disease. Front Cell Neurosci 8:167
Nishimura H, Nakagiri I, Mizuno-Matsumoto Y, Ishii R, Ukai S, Shinosaki K (2008) Time-series fractal analysis of meg changes induced by emotional stimulation. J Jpn Soc Fuzzy Theory Intell Inform 20(1):117–128
Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T (2017) Temporal-specific roles of fractality in EEG signal of Alzheimer’s disease. In: Proceedings of 2017 international joint conference on neural networks (IJCNN2017), IEEE, pp 4396–4399
Park JH, Kim S, Kim CH, Cichocki A, Kim K (2007) Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals 15(04):399–404
Reisberg B, Borenstein J, Franssen E, Shulman E, Steinberg G, Ferris SH (1986) Remediable behavioral symptomatology in Alzheimer’s disease. Psychiatr Serv 37(12):1199–1201
Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F (2016) Electroencephalographic fractal dimension in healthy ageing and Alzheimers disease. PloS One 11(2):e0149587
Stam C, De Haan W, Daffertshofer A, Jones B, Manshanden I, Van Walsum AVC, Montez T, Verbunt J, De Munck J, Van Dijk B et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1):213–224
Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301
Strack B, Jacobs KM, Cios KJ (2014) Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 24(05):1440002
Takahashi T (2013) Complexity of spontaneous brain activity in mental disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 45:258–266
Teramae J, Tsubo Y, Fukai T (2012) Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci Rep 2:485
Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci 91(11):5033–5037
Wada Y, Nanbu Y, Koshino Y, Shimada Y, Hashimoto T (1996) Inter-and intrahemispheric EEG coherence during light drowsiness. Clin EEG Neurosci 27(2):84–88
Woyshville MJ, Calabrese JR (1994) Quantification of occipital EEG changes in Alzheimer’s disease utilizing a new metric: the fractal dimension. Biol Psychiatry 35(6):381–387
Yamanishi T, Liu JQ, Nishimura H (2012) Modeling fluctuations in default-mode brain network using a spiking neural network. Int J Neural Syst 22(04):1250016
Yang AC, Tsai SJ (2013) Is mental illness complex? from behavior to brain. Progress Neuro-Psychopharmacol Biol Psychiatry 45:253–257
Zappasodi F, Olejarczyk E, Marzetti L, Assenza G, Pizzella V, Tecchio F (2014) Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One 9(6):e100199
Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, Becker B, Liu Y, Kendrick KM, Lu G et al (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139(8):2307–2321