Giảm thiểu thuộc tính và thu nhận quy tắc trong ngữ cảnh quyết định chính thức dựa trên lưới khái niệm hướng đối tượng (thuộc tính)

Keyun Qin1, Bo Li1,2, Zheng Pei
1School of Mathematics, Southwest Jiaotong University, Chengdu, China
2The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China

Tóm tắt

Nghiên cứu về lưới khái niệm, lưới khái niệm hướng thuộc tính và lưới khái niệm hướng đối tượng cung cấp những cấu trúc khái niệm bổ sung, có thể được sử dụng để tìm kiếm, phân tích và trích xuất thông tin từ các tập dữ liệu. Bài báo này dành riêng cho việc nghiên cứu thu nhận quy tắc và giảm thiểu thuộc tính trong ngữ cảnh quyết định chính thức. Dựa trên các khái niệm hướng đối tượng và khái niệm hướng thuộc tính, các khái niệm về quy tắc quyết định hướng đối tượng và quy tắc quyết định hướng thuộc tính được đề xuất. Bằng cách sử dụng một số quan hệ tương đương trên tập hợp các phạm vi của các lưới khái niệm điều kiện liên quan và lưới khái niệm quyết định, các phương pháp thu nhận quy tắc được trình bày. Các phương pháp giảm thiểu thuộc tính cho ngữ cảnh quyết định chính thức nhằm bảo tồn các quy tắc quyết định hướng đối tượng và quy tắc quyết định hướng thuộc tính được đưa ra bằng cách sử dụng các thuộc tính phân biệt.

Từ khóa


Tài liệu tham khảo

Belohlavek R, Vychodil V (2009) Formal concept analysis with background knowledge: attribute priorities. IEEE Trans Syst Man Cybern Part C Appl Rev 39(4):399–409 Beydoun G (2009) Formal concept analysis for an e-learning semantic web. Expert Syst Appl 36(8):10952–10961 Carpineto C, Romano G (2004) Exploiting the potential of concept lattices for information retrieval with CREDO. J UCS 10(8):985–1013 Dias SM, Vieira NJ (2015) Concept lattices reduction: definition, analysis and classification. Expert Syst Appl 42:7084–7097 Duntsch I, Gediga G (2002) Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE international conference on data miningc (ICDM’02), IEEE Computer Society, Washington DC, USA, pp 155–162 Elloumi S, Jaam J, Hasnah A, Jaoua A, Nafkha I (2004) A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Inf Sci 163:253–262 Formica A (2010) Concept similarity in fuzzy formal concept analysis for semantic web. Int J Uncertain Fuzz Knowl Based Syst 18(02):153–167 Formica A (2012) Semantic web search based on rough sets and fuzzy formal concept analysis. Knowl Based Syst 26:40–47 Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin Klimes J (2014) Using formal concept analysis for control in cyber-physical systems. Procedia Eng 69:1518–1522 Konecny J (2017) On attribute reduction in concept lattices: methods based on discernibility matrix are outperformed by basic clarification and reduction. Inf Sci 415:199–212 Kuznetsov SO (2001) Machine learning on the basis of formal concept analysis. Automat Rem Control 62(10):1543–1564 Kuznetsov SO (2004) Complexity of learning in concept lattices from positive and negative examples. Discrete Appl Math 142:111–125 Li JH, Mei CL, Lv YJ (2011) Knowledge reduction in decision formal contexts. Knowl Based Syst 24:709–715 Li JH, Mei CL, Lv YJ (2012) Knowledge reduction in real decision formal contexts. Inf Sci 189:191–207 Li JH, Mei CL, Lv YJ (2012) Knowledge reduction in formal decision contexts based on an order-preserving mapping. Int J General Syst 41:143–161 Li JH, Mei CL, Wang J, Zhang X (2014) Rule-preserved object compression in formal decision contexts using concept lattices. Knowl Based Syst 71:435–445 Li JH, Huang C, Mei CL, Yin YQ (2017) An intensive study on rule acquisition in formal decision contexts based on minimal closed label concept lattices. Intell Autom Soft Comput 23:519–533 Li JH, Kumar CA, Mei CL, Wang XZ (2017) Comparison of reduction in formal decision contexts. Int J Approx Reason 80:100–122 Li JY, Wang X, Wu WZ, Xu YH (2017) Attribute reduction in inconsistent formal decision contexts based on congruence relations. Int J Mach Learn Cybern 8:81–94 Li KW, Shao MW, Wu WZ (2017) A data reduction method in formal fuzzy contexts. Int J Mach Learn Cybern 8:1145–1155 Liu MQ, Wei L, Zhao W (2009) The reduction theory of object oriented concept lattices and property oriented concept lattices. In: Wen P, Li Y, Polkowski L, Yao Y, Tsumoto S, Wang G (eds) Rough sets and knowledge technology. RSKT 2009. Lecture notes in computer science, vol 5589. Springer, Berlin, Heidelberg Ma JM, Leung Y, Zhang WX (2014) Attribute reductions in object-oriented concept lattices. Int J Mach Learn Cybern 5:789–813 Ma JM, Cai MJ, Zou CJ (2017) Concept acquisition approach of object-oriented concept lattices. Int J Mach Learn Cybern 8:123–134 Medina J (2012) Relating attribute reduction in formal, object-oriented and property-oriented concept lattices. Comput Math Appl 64:1992–2002 Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of Galois connections induced by object–attribute relational data. Inf Sci 185:114–127 Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356 Pei D, Mi JS (2011) Attribute reduction in decision formal context based on homomorphism. Int J Mach Learn Cybern 2:289–293 Poelmans J, Elzinga P, Viaene S, Dedene G (2010) Formal concept analysis in knowledge discovery: a survey. In: International conference on conceptual structures, pp 139–153 Qian T, Wei L, Qi JJ (2017) Decomposition methods of formal contexts to construct concept lattices. Int J Mach Learn Cybern 8:95–108 Ren R, Wei L (2016) The attribute reductions of three-way concept lattices. Knowl Based Syst 99:92–102 Ren Y, Li JH, Aswani Kumar C, Liu WQ (2014) Rule acquisition in formal decision contexts based on formal, object-oriented and property-oriented concept lattices. Sci World J 2014:1–10 Sampath S, Sprenkle S, Gibson E, Pollock L, Greenwald AS (2007) Applying concept analysis to user-session-based testing of web applications. IEEE Trans Softw Eng 33(10):643–658 Shao MW, Li KW (2017) Attribute reduction in generalized one-sided formal contexts. Inf Sci 378:317–327 Shao MW, Leung Y, Wu WZ (2014) Rule acquisition and complexity reduction in formal decision contexts. Int J Approx Reason 55:259–274 Shao MW, Yang HZ, Wu WZ (2015) Knowledge reduction in formal fuzzy contexts. Knowl Based Syst 73:265–275 Wan Q, Wei L (2015) Approximate concepts acquisition based on formal contexts. Knowl Based Syst 75:78–86 Wang R, Chen D, Kwong S (2014) Fuzzy rough set based active learning. IEEE Trans Fuzzy Syst 22(6):1699–1704 Wang R, Kwong S, Wang XZ, Jiang QS (2015) Segment based decision tree induction with continuous valued attributes. IEEE Trans Cybern 45(7):1262–1275 Wang X, Zhang W (2008) Relations of attribute reduction between object and property oriented concept lattices. Knowl Based Syst 21:398–403 Wei L, Qi JJ (2010) Relation between concept lattice reduction and rough set reduction. Knowl Based Syst 23:934–938 Wei L, Qi J, Zhang W (2008) Attribute reduction theory of concept lattice based on decision formal contexts. Sci China Ser F Inf Sci 51(7):910–923 Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Springer, Dordrecht, pp 445–470 Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21(10):1461–1474 Yao Y (2004) A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto S, Słowiński R, Komorowski J, Grzymała-Busse JW (eds) Rough sets and current trends in computing. RSCTC 2004. Lecture notes in computer science, vol 3066. Springer, Berlin, Heidelberg Yao Y (2004) Concept lattices in rough set theory. In: Fuzzy information, 2004. Processing NAFIPS’04. IEEE Annual Meeting of the IEEE, vol 2, pp 796–801 Yao Y (2015) The two sides of the theory of rough sets. Knowl Based Syst 80:67–77 Yao Y (2017) Interval sets and three-way concept analysis in incomplete contexts. Int J Mach Learn Cybern 8:3–20 Zhang W, Wei L, Qi J (2005) Attribute reduction theory and approach to concept lattice. Sci China Ser F Inf Sci 48(6):713–726 Zhang WX, Qiu GF (2005) Uncertain decision making based on rough sets. Publishing of Tsinghua University, Beijing Zhao YX, Li JH, Liu WQ, Xu WH (2017) Cognitive concept learning from incomplete information. Int J Mach Learn Cybern 8:159–170