Attractors for classes of iterated function systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Banakh, T., Nowak, M., Strobin, F.: Detecting topological and Banach fractals among zero-dimensional spaces. Topology Appl. 196(part A), 22–30 (2015)
Bruckner, A.M., Steele, T.H.: The Lipschitz structure of continuous self-maps of generic compact sets. J. Math. Anal. Appl. 188(3), 798–808 (1994)
D’Aniello, E.: Non-self-similar sets in $${[0,1]}^{N}$$ [ 0 , 1 ] N of arbitrary dimension. J. Math. Anal. Appl. 456(2), 1123–1128 (2017)
D’Aniello, E., Steele, T.H.: Attractors for iterated function schemes on $$[0,1]^{n}$$ [ 0 , 1 ] n are exceptional. J. Math. Anal. Appl. 424(1), 537–541 (2015)
D’Aniello, E., Steele, T.H.: Attractors for iterated function systems. J. Fractal Geom. 3(2), 95–117 (2016)
De Blasi, F.S., Myjak, J.: Sur la porosité de l’ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris Sér. I Math. 308(2), 51–54 (1989)
Edgar, G.: Measure, Topology and Fractal Geometry. Undergraduate Texts in Mathematics. Springer, New York (1990)
Mazurkiewicz, S., Sierpiński, W.: Contribution à la topologie des ensembles dénombrables. Fund. Math. 1, 17–27 (1920)
Nowak, M.: Topological classification of scattered IFS-attractors. Topology Appl. 160(14), 1889–1901 (2013)
Reich, S., Zaslavski, A.J.: Almost all nonexpansive mappings are contractive. C. R. Math. Acad. Sci. Soc. R. Can. 22(3), 118–124 (2000)
Saks, S.: Theory of the Integral. Dover, New York (2005)
Schief, A.: Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122(1), 111–115 (1994)
Steele, T.H.: Towards a characterization of $$\omega $$ ω -limit sets for Lipschitz functions. Real Anal. Exchange 22(1), 201–212 (1996)