Attractors for classes of iterated function systems

Emma D’Aniello1, Timothy Steele2
1Dipartimento di Matematica e Fisica, Scuola Politecnica e delle Scienze di Base, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
2Department of Mathematics, Weber State University, Ogden, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Banakh, T., Nowak, M., Strobin, F.: Detecting topological and Banach fractals among zero-dimensional spaces. Topology Appl. 196(part A), 22–30 (2015)

Bruckner, A.M., Steele, T.H.: The Lipschitz structure of continuous self-maps of generic compact sets. J. Math. Anal. Appl. 188(3), 798–808 (1994)

D’Aniello, E.: Non-self-similar sets in $${[0,1]}^{N}$$ [ 0 , 1 ] N of arbitrary dimension. J. Math. Anal. Appl. 456(2), 1123–1128 (2017)

D’Aniello, E., Steele, T.H.: Attractors for iterated function schemes on $$[0,1]^{n}$$ [ 0 , 1 ] n are exceptional. J. Math. Anal. Appl. 424(1), 537–541 (2015)

D’Aniello, E., Steele, T.H.: A non self-similar set. Real Anal. Exchange 41(2), 347–350 (2016)

D’Aniello, E., Steele, T.H.: Attractors for iterated function systems. J. Fractal Geom. 3(2), 95–117 (2016)

De Blasi, F.S., Myjak, J.: Sur la porosité de l’ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris Sér. I Math. 308(2), 51–54 (1989)

Edgar, G.: Measure, Topology and Fractal Geometry. Undergraduate Texts in Mathematics. Springer, New York (1990)

Falconer, K.: Fractal Geometry, 2nd edn. Wiley, Hoboken (2003)

Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

Mazurkiewicz, S., Sierpiński, W.: Contribution à la topologie des ensembles dénombrables. Fund. Math. 1, 17–27 (1920)

Nowak, M.: Topological classification of scattered IFS-attractors. Topology Appl. 160(14), 1889–1901 (2013)

Reich, S., Zaslavski, A.J.: Almost all nonexpansive mappings are contractive. C. R. Math. Acad. Sci. Soc. R. Can. 22(3), 118–124 (2000)

Saks, S.: Theory of the Integral. Dover, New York (2005)

Schief, A.: Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122(1), 111–115 (1994)

Steele, T.H.: Towards a characterization of $$\omega $$ ω -limit sets for Lipschitz functions. Real Anal. Exchange 22(1), 201–212 (1996)

Zajiček, L.: Porosity and $$\sigma $$ σ -porosity. Real Anal. Exchange 13(2), 314–350 (1987/88)