Attitude dynamics of gyrostat–satellites under control by magnetic actuators at small perturbations

Anton V. Doroshin1
1Space Engineering Department, Samara National Research University, Moskovskoe shosse 34, Samara, 443086 Russian Federation

Tài liệu tham khảo

Arkhangelskiĭ, 1977 Wittenburg, 1977 Serret, 1866, Mémoire sur l'emploi de la méthode de la variation des arbitraires dans la théorie des mouvements de rotation, Mémoires de l'Academie des Sciences de Paris, 55, 585 Andoyer, 1923 Deprit, 1967, A free rotation of a rigid body studied in the phase plane, Am J Phys, 35, 424, 10.1119/1.1974113 Kozlov, 1980 Aslanov, 2004 Aslanov, 2010, Chaotic dynamics of an unbalanced gyrostat, J Appl Math Mech, 74, 524, 10.1016/j.jappmathmech.2010.11.003 Doroshin, 2013, Exact solutions in attitude dynamics of a magnetic dual-spin spacecraft and a generalization of the lagrange top, WSEAS Trans Syst, 12, 471 Doroshin, 2014, Chaos and its avoidance in spinup dynamics of an axial dual-spin spacecraft, Acta Astronaut, 94, 563, 10.1016/j.actaastro.2013.09.003 Doroshin, 2015, Heteroclinic chaos in attitude dynamics of a dual-spin spacecraft at small oscillations of its magnetic moment, WSEAS Trans Syst, 14, 158 Doroshin, 2016, Heteroclinic Chaos and its local suppression in attitude dynamics of an asymmetrical dual-spin spacecraft and gyrostat-satellites. The part I – Main models and solutions, Commun Nonlinear Sci Numer Simul, 31, 151, 10.1016/j.cnsns.2015.06.022 Doroshin, 2016, Heteroclinic chaos and its local suppression in attitude dynamics of an asymmetrical dual-spin spacecraft and gyrostat-satellites. The part II – the heteroclinic chaos investigation, 31, 171 Craig Stickler, 1976, Elementary magnetic attitude control system, J Spacecraft Rockets, 13, 282, 10.2514/3.57089 Lovera, 2004, Spacecraft attitude control using magnetic actuators, Automatica, 40, 1405, 10.1016/j.automatica.2004.02.022 Silani, 2005, Magnetic spacecraft attitude control: a survey and some new results, Control Eng Pract, 13, 357, 10.1016/j.conengprac.2003.12.017 Iñarrea, 2009, Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit, Chaos Soliton Fract, 40, 1637, 10.1016/j.chaos.2007.09.047 Bushenkov, 2002, Attitude stabilization of a satellite by magnetic coils, Acta Astronaut, 50, 721, 10.1016/S0094-5765(02)00011-5 Ovchinnikov, 2012, Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation, Acta Astronaut, 77, 48, 10.1016/j.actaastro.2012.03.001 Ovchinnikov, 2007, Attitude dynamics of the first Russian nanosatellite TNS-0, Acta Astronaut, 61, 277, 10.1016/j.actaastro.2007.01.006 Liua, 2004, Chaotic attitude motion and its control of spacecraft in elliptic orbit and geomagnetic field, Acta Astronaut, 55, 487, 10.1016/j.actaastro.2004.05.003 Chen, 2002, Chaotic attitude motion of a magnetic rigid spacecraft and its control, Int J Non Linear Mech, 37, 493, 10.1016/S0020-7462(01)00023-3 Jan, 2005, Attitude control system for ROCSAT-3 microsatellite: a conceptual design, Acta Astronaut, 56, 439, 10.1016/j.actaastro.2004.05.066 Slavinskis, 2014, High spin rate magnetic controller for nanosatellites, Acta Astronaut, 95, 218, 10.1016/j.actaastro.2013.11.014 Bayat, 2009, A heuristic design method for attitude stabilization of magnetic actuated satellites, Acta Astronaut, 65, 1813, 10.1016/j.actaastro.2009.04.013 Avanzini, 2012, Magnetic detumbling of a rigid spacecraft, J Guidance Control Dynamics, 35, 1326, 10.2514/1.53074 Flatley, 1997, 79 Zavoli, 2016, Spacecraft dynamics under the action of Y-dot magnetic control law, Acta Astronaut, 122, 146, 10.1016/j.actaastro.2016.01.024 A.Q. Rogers and R.A. Summers, Creating capable nanosatellites for critical space missions Johns Hopkins Apl technical digest, Vol. 29, Number 3 (2010), 283–288. Melnikov, 1963, On the stability of the centre for time-periodic perturbations, Trans Moscow Math Soc, 12, 1 Xie, 2017, On application melnikov method to detecting the edge of chaos for a micro-cantilever, 155 Zhou, 2017, Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient, Aerosp Sci Technol, 60, 115, 10.1016/j.ast.2016.11.003 Deng, 2017, Flexible attitude control design and on-orbit performance of the ZDPS-2 satellite, Acta Astronaut, 130, 147, 10.1016/j.actaastro.2016.10.020 Mazzini, 2016, Sensors and actuators technologies. in flexible spacecraft dynamics, 289