Sự chớp mắt chú ý và các dấu hiệu dopamine không xâm lấn giả thuyết: Hai thí nghiệm để củng cố các mối liên hệ khả dĩ

Springer Science and Business Media LLC - Tập 19 - Trang 1444-1457 - 2019
Anne Charlotte Trutti1, Zsuzsika Sjoerds1, Bernhard Hommel1
1Cognitive Psychology Unit & Leiden Institute for Brain & Cognition, Institute of Psychology, Leiden University, Leiden, The Netherlands

Tóm tắt

Kiểm soát hành vi thích ứng liên quan đến sự cân bằng giữa tính kiên định từ trên xuống và việc cập nhật linh hoạt các mục tiêu dưới các yêu cầu thay đổi. Theo mô hình trạng thái kiểm soát siêu nhận thức (MSM), sự cân bằng này xuất hiện từ sự tương tác giữa hệ thống dopaminergic vỏ não và hạch đuôi. Nhiệm vụ chớp mắt chú ý (AB) đã được lập luận là liên quan đến sự tương tác giữa tính kiên định và tính linh hoạt, vì nó phản ánh hiện tượng kiên định thái quá - việc phân bổ quá mức tài nguyên chú ý cho việc xử lý mục tiêu đầu tiên trong hai mục tiêu liên tiếp. Đáng chú ý, các nghiên cứu trước đây không đưa ra kết luận chắc chắn về mối liên hệ giữa AB và các chỉ số dopamine không xâm lấn bao gồm tỉ lệ chớp mắt tự phát (sEBR), vốn được cho là đánh giá mức độ dopamine hạch đuôi. Chúng tôi nhằm mục đích củng cố và mở rộng các nỗ lực trước đây để dự đoán kích thước cá nhân của AB trong hai thí nghiệm riêng biệt với kích thước mẫu lớn hơn (N = 71 & N = 65) thông qua các chỉ số hành vi và sinh lý không xâm lấn về dopamine (DA), chẳng hạn như sEBR và các thước đo tâm trạng, có khả năng phản ánh mức độ dopamine hạch đuôi, và phân biệt màu sắc, được cho là liên quan đến mức độ dopamine vỏ não. Các phát hiện của chúng tôi không xác nhận dự đoán rằng kích thước AB thay đổi đồng thời với sEBR, tâm trạng, hoặc phân biệt màu sắc. Những ý nghĩa của sự không nhất quán này với các quan sát trước đó được thảo luận.

Từ khóa

#chớp mắt chú ý #dopamine #chỉ số không xâm lấn #mô hình trạng thái kiểm soát siêu nhận thức #hành vi thích ứng

Tài liệu tham khảo

Agostino, R., Bologna, M., Dinapoli, L., Gregori, B., Fabbrini, G., Accornero, N., & Berardelli, A. (2008). Voluntary, spontaneous, and reflex blinking in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society. 23, 669–675. Akbari Chermahini, S., & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465. https://doi.org/10.1016/j.cognition.2010.03.007 Akbari Chermahini, S., & Hommel, B. (2012). More creative through positive mood? Not everyone! Frontiers in Human Neuroscience, 6, 319. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed). Arlington, VA: American Psychiatric Association Arnsten, A. F. (1997). Catecholamine regulation of the prefrontal cortex. Journal of Psychopharmacology, 11, 151–162. Baas, M., De Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 779–806. Banaschewski, T., Ruppert, S., Tannock, R., Albrecht, B., Becker, A., Uebel, H., … Rothenberger, A. (2006). Colour perception in ADHD. Journal of Child Psychology and Psychiatry, 47(6), 568–572. Beeler, J. A., Daw, N., Frazier, C. R. M., & Zhuang, X. (2010). Tonic dopamine modulates exploitation of reward learning. Frontiers in Behavioral Neuroscience, 4(11), 1–14. https://doi.org/10.3389/fnbeh.2010.00170. Blin, O., Masson, G., Azulay, J. P., Fondarai, J., & Serratrice, G. (1990). Apomorphine-induced blinking and yawning in healthy volunteers. British Journal of Clinical Pharmacology, 30, 769–773. Bologna, M., Fasano, A., Modugno, N., Fabbrini, G., & Berardelli, A. (2012). Effects of subthalamic nucleus deep brain stimulation and L-dopa on blinking in Parkinson’s disease. Experimental Neurology, 235(1), 265–272. https://doi.org/10.1016/j.expneurol.2012.02.004 Boulougouris, V., Castañé, A., & Robbins, T. W. (2009). Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology, 202(4), 611–620. https://doi.org/10.1007/s00213-008-1341-2 Bowman, K. J. (1982). A method for quantitative scoring of the Farnsworth panel D-15. Acta Ophthalmologica, 60, 907–916. Brandies, R., & Yehuda, S. (2008). The possible role of retinal dopaminergic system in visual performance. Neuroscience and Biobehavioral Reviews, 32(4), 611–656. doi:10.1016-/j.neubiorev.2007.09.004 Büttner, T., Kuhn, W., Müller, T., Patzold, T., Heidbrink, K., & Przuntek, H. (1995). Distorted color discrimination in ‘de nova’ parkinsonian patients. Neurology, 45(2) 386–387. https://doi.org/10.1212/WNL.45.2.386 Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109–127. Colzato, L. S., Sellaro, R., Hulka, L. M., Quednow, B. B., & Hommel, B. (2014a). Cognitive control predicted by color vision, and vice versa. Neuropsychologia, 62(1), 55–59. https://doi.org/10.1016/j.neuropsychologia.2014.07.010 Colzato, L. S., Sellaro, R., Rossi Paccani, C., & Hommel, B. (2014b). Attentional control in the attentional blink is modulated by odor. Attention, Perception, & Psychophysics, 76, 1510–1515. Colzato, L. S., Sellaro, R., Samara, I., Baas, M., & Hommel, B. (2015). Meditation-induced states predict attentional control over time. Consciousness and Cognition, 37, 57–62. Colzato, L. S., Slagter, H. A., de Rover, M., & Hommel, B. (2011). Dopamine and the Management of Attentional Resources: Genetic Markers of Striatal D2 Dopamine Predict Individual Differences in the Attentional Blink. Journal of Cognitive Neuroscience, 23(11), 3576–3585. https://doi.org/10.1162/jocn_a_00049 Colzato, L. S., Slagter, H. A., Spapé, M. M. A., & Hommel, B. (2008). Blinks of the eye predict blinks of the mind. Neuropsychologia, 46(13), 3179–3183. https://doi.org/10.1016/j.neuropsychologia.2008.07.006 Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: Evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48(9), 2764–2768. https://doi.org/10.1016/j.neuropsychologia.2010.04.023 Cools, R. (2011). Dopaminergic control of the striatum for high-level cognition. Current Opinion in Neurobiology, 21(3), 402–407 Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028 Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. The Journal of Neuroscience, 28(5). https://doi.org/10.1523/JNEUROSCI.4475-07.2008 Cools, R., Ivry, R. B., & D’Esposito, M. (2006). The human striatum is necessary for responding to changes in stimulus relevance. Journal of Cognitive Neuroscience, 18, 1973–1983. https://doi.org/10.1162/jocn.2006.18.12.1973. R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ Dang, L. C., Samanez-Larkin, G. R., Castrellon, J. J., Perkins, S. F., Cowan, R. L., Newhouse, P. A., & Zald, D. H. (2017). Spontaneous eye blink rate (EBR) is uncorrelated with dopamine D2 receptor availability and unmodulated by dopamine agonism in healthy adults. Eneuro, 4(5). https://doi.org/10.1523/ENEURO.0211-17.2017 Desai, P., Roy, M., Roy, A., Brown, S., & Smelson, D. (1997). Impaired color vision in cocaine-withdrawn patients. Archives of General Psychiatry, 54(8), 696–699. Doughty, M. J. (2001). Consideration of three types of spontaneous eyeblink activity in normal humans: During reading and video display terminal use, in primary gaze, and while in conversation. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 78, 712–725. Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64(9), 739–749. https://doi.org/10.1016/j.biopsych.2008.05.015 Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83(3), 733–750. Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683–1700. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(11), 1309–1312. https://doi.org/10.1126/science.1146157 Geller, A. M. (2001). A table of color distance scores for quantitative scoring of the Lanthony desaturate color vision test. Neurotoxicology and Teratology, 23, 265–267. Georgiou, N., Bradshaw, J. L., Phillips, J. G., Bradshaw, J. A., & Chiu, E. (1995). The Simon effect and attention deficits in Gilles de la Tourette’s syndrome and Huntington’s disease. Brain, 118, 1305–1318. Gjedde, A., Kumakura, Y., Cumming, P., Linnet, J., & Moller, A. (2010). Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proceedings of the National Academy of Sciences, 107(8), 3870–3875. https://doi.org/10.1073/pnas.0912319107 Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403–423. https://doi.org/10.1016/j.neuropsychologia.2014.07.015 Groman, S. M., James, A. S., Seu, E., Tran, S., Clark, T. A., Harpster, S. N., … Jentsch, J. D. (2014). In the blink of an eye: Relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. Journal of Neuroscience, 34(43), 14443–14454. https://doi.org/10.1523/JNEUROSCI.3037-14.2014 Guthrie, M., Myers, C. E., & Gluck, M. A.(2009). A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson’s disease. Behavioural Brain Research, 200(1), 48–59. Haber, S. N. (2011). Neuroanatomy of reward: A view from the ventral striatum. In J. A. Gottfried (Ed.), Neurobiology of Sensation and Reward. Boca Raton: CRC Press. Hommel, B. (2015). Between persistence and flexibility: The yin and yang of action control. Advances in Motivation Science, 2, 33–67. https://doi.org/10.1016/bs.adms.2015.04.003 Hulka, L. M., Wagner, M., Preller, K. H., Jenni, D., & Quednow, B. B. (2013). Blue-yellow color vision impairment and cognitive deficits in occasional and dependent stimulant users. International Journal of Neuropsychopharmacology, 16(3), 535–547. JASP Team. (2018). JASP (Version 0.9) [Computer software]. Retrieved from https://jasp-stats.org/ Jolicoeur, P., & DellʼAcqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138–202 Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function— A review. Neuroscience & Behavioral Reviews, 71, 58–82. Jongkees, B. J., Steenbergen, L., & Colzato, L. S. (2017). Color vision predicts processing modes of goal activation during action cascading. Cortex, 94, 123–130. https://doi.org/10.1016/j.cortex.2017.07.004 Kaminer, J., Powers, A. S., Horn, K. G., Hui, C., & Evinger, C. (2011). Characterizing the spontaneous blink generator: An animal model. Journal of Neuroscience, 31(31), 11256–11267. https://doi.org/10.1523/JNEUROSCI.6218-10.2011 Kim, S., Al-Haj, M., Chen, S., Fuller, S., Jain, U., Carrasco, M., & Tannock, R. (2014). Colour vision in ADHD: Part 1—Testing the retinal dopaminergic hypothesis. Behavioral and Brain Functions, 10, 38. https://doi.org/10.1186/1744-9081-10-38 Klanker, M., Feenstra, M., & Denys, D. (2013). Dopaminergic control of cognitive flexibility in humans and animals. Frontiers in Neuroscience, 7, 201. https://doi.org/10.3389/fnins.2013.00201 Lanthony, P. (1978). The desaturated panel D-15. Documenta Ophthalmologica, 46, 185–189. Mekern, V. N., Sjoerds, Z., & Hommel, B. (2019). How metacontrol biases and adaptivity impact performance in cognitive search tasks. Cognition, 182, 251–259. https://doi.org/10.1016/j.cognition.2018.10.001 Melun, J. P., Morin, L. M., Muise, J. G., & DesRosiers, M. (2001). Color vision deficiencies in Gilles de la Tourette syndrome. Journal of the Neurological Sciences, 186(1/2), 107–110. Motley, S. E. (2018). Relationship between neuromodulation and working memory in the prefrontal cortex: It’s complicated. Frontiers in Neural Circuits, 12(April), 1–6. https://doi.org/10.3389/fncir.2018.00031 Oh, Y.-S., Kim, J.-S., Chung, S.-W., Song, I.-U., Kim, Y.-U., Kim, Y.-I., Lee, L. S. (2011). Color vision in Parkinson’s disease and essential tremor. European Journal of Neurology, 18(4), 577–583. Olivers, C. N. L., & Nieuwenhuis, S. T. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal. Psychological Science, 16, 265–269. Paulus, W., Schwarz, G., Werner, A., Lange, H., Bayer, A., Hofschuster, M., … Zrenner, E. (1993). Impairment of retinal increment thresholds in Huntington’s disease. Annals of Neurology, 34, 574–578. Pieri, V., Diederich, N. J., Raman, R., & Goetz, C. G. (2000). Decreased color discrimination and contrast sensitivity in Parkinson’s disease. Journal of the Neurological Sciences, 172, 7–11. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860. Reddy, V. C., Patel, S. V., Hodge, D. O., & Leavitt, J. A. (2013). Corneal sensitivity, blink rate, and corneal nerve density in progressive supranuclear palsy and Parkinson disease. Cornea, 32, 631–635. Russell, J. A., Weiss, A., &Mendelsohn, G. A. (1989). Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57, 493–502. Sellaro, R., Hommel, B., & Colzato, L. S. (2014). Increased response conflict in recreational cocaine polydrug users. Experimental Brain Research, 232, 113–119. Sescousse, G., Ligneul, R., van Holst, R. J., Janssen, L. K., de Boer, F., Janssen, M., … Cools, R. 2018). Spontaneous eye blink rate and dopamine synthesis capacity: Preliminary evidence for an absence of positive correlation. European Journal of Neuroscience, 47(9), 1081–1086. https://doi.org/10.1111/ejn.13895 Shapiro, K., Schmitz, F., Martens, S., Hommel, B., & Schnitzler, A. (2006). Resource sharing in the attentional blink. NeuroReport, 17(2), 163–166. Shapiro, K. L., Hanslmayr, S., Enns, J. T., & Lleras, A. (2017). Alpha, beta: The rhythm of the attentional blink. Psychonomic Bulletin & Review, 24(6), 1862–1869. https://doi.org/10.3758/s13423-017-1257-0 Slagter, H. A., & Georgopoulou, K. (2013). Distractor inhibition predicts individual differences in recovery from the attentional blink. PLOS ONE, 8(5), 8–12. https://doi.org/10.1371/journal.pone.0064681 Slagter, H. A., Tomer, R., Christian, B. T., Fox, A. S., Colzato, L. S., King, C. R., … Davidson, R. J. (2012). PET evidence for a role for striatal dopamine in the attentional blink: Functional implications. Journal of Cognitive Neuroscience, 1932–1940. Spinelli, S., Vasa, R. A., Joel, S., Nelson, T. E., Pekar, J. J., & Mostofsky, S. H. (2011). Variability in post-error behavioral adjustment is associated with functional abnormalities in the temporal cortex in children with ADHD. Journal of Child Psychology and Psychiatry, 52, 808–816. Staudigl, T., Hartl, E., Noachtar, S., Doeller, C. F., & Jensen, O. (2017). Saccades phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding. PLOS Biology, 1–15. https://doi.org/10.1101/158758 Strakowski, S. M., & Sax, K. W. (1998). Progressive behavioral response to repeated d-amphetamine challenge: Further evidence for sensitization in humans. Biological Psychiatry, 44, 1171–1177. Strakowski, S. M., Sax, K. W., Setters, M. J., & Keck P. E., Jr. (1996). Enhanced response to repeated d-amphetamine challenge: Evidence for behavioral sensitization in humans. Biological Psychiatry, 40, 872–880. Tannock, R., Banaschewski, T., & Gold, D. (2006). Color naming deficits and attention-deficit/hyperactivity disorder: A retinal dopaminergic hypothesis. Behavioral and Brain Functions, 2, 4. Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656–1674. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105 Williams, G. V., & Castner, S. A. (2006). Under the curve: Critical issues for elucidating D1 receptor function in working memory. Neuroscience, 139, 263–276. Wyszeski, G., & Stiles, W. S. (1982). Color science (2nd). New York: Wiley. Zaldivar, D., Goense, J., Lowe, S. C., Logothetis, N. K., & Panzeri, S. (2018). Dopamine is signaled by mid-frequency oscillations and boosts output layers visual information in visual cortex. Current Biology, 28(2), 224–235. https://doi.org/10.1016/j.cub.2017.12.006 Zaman, M. L. & Doughty, M. J. (1997). Some methodological issues in the assessment of the spontaneous eyeblink frequency in man. Ophthalmic & Physiological Optics,17, 421–432. Zhang, L., Doyon, W. M., Clark, J. J., Phillips, P. E. M., & Dani, J. A. (2009). Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum, 396–404. https://doi.org/10.1124/mol.109.056317