Attempted asymmetric electrochemical reductions in magnetic fields

Origins of life - Tập 20 - Trang 1-13 - 1990
William A. Bonner1
1Department of Chemistry Stanford University Stanford USA

Tóm tắt

Because of negative, ambiguous or controversial results claimed by previous investigators studying the potential efficacy of magnetic fields in directing asymmetric syntheses and because of its potential importance as regards the origin of optical activity, we have attempted to confirm a recent report by Takahashiet al. (1986), who claimed that phenylglyoxylic acid (XIX) may be reduced electrochemically at a mercury cathode placed in a magnetic field of 0.168 T to optically active mandelic acid (XX), with optical yields favoring the S(+)-XX enantiomer as high as 25%. We have found that the complete reduction of XIX in pH 3.8 acetate buffer at a mercury cathode in magnetic fields of either 0.14 or 7.05 T leads only to racemic XX products. The earlier literature describing attempted absolute asymmetric syntheses in magnetic, electric and gravitational fields is briefly and critically reviewed.

Tài liệu tham khảo

Barron, L. D.: 1986,Chem. Phys. Lett. 123, 423;Chem. Soc. Rev. 15, 189;J. Am. Chem. Soc. 108, 5539; 1987,Biosystems 20, 7. Bernstein, W. J.: 1972, PhD Thesis, Lawrence Berkeley Laboratory, LBL-1054. Dougherty, R. C.: 1980,J. Am. Chem. Soc. 102, 380. Dougherty, R. C.: 1981,Origins of Life 11, 71. Edwards, D., Cooper, K., and Dougherty, R. C.: 1980,J. Am. Chem. Soc. 102, 381. Gerike, P.: 1975,Naturwiss. 62, 381. Haberditzl, W., Thiemann, W., and Jarzac, U.: 1983,Ber. Bunsenges. Phys. Chem. 87, 366. Honda, C. and Hada, H.: 1976,Tetrahedron Lett. (3), 177. Jaeger, F. M.: 1930, ‘Optical Activity and High Temperature Measurements’, McGraw-Hill, New York, p. 75–76. Jubault, M.: 1980,J. Chem. Soc. Chem. Comm. 953. Jubault, M. and Raoult, E.: 1977,J. Chem. Soc. Chem. Comm. 250. Jubault, M., Raoult, E., and Peltier, D.: 1973,C.R. Acad. Sci., Ser. C. 277, 583; 1974,Electrochim. Acta 19, 865; 1980,Electrochim. Acta 25, 1359. Kovacs, K. L., Keszthelyi, L., and Goldanskii, V. I.: 1981,Origins of Life 11, 93. Mason, S. F.: 1982, ‘Molecular Optical Activity and the Chiral Discriminations’, Cambridge Univ. Press. Mead, C. A. and Moscowitz, A.: 1980,J. Am. Chem. Soc. 102, 7301. Mead, C. A., Moscowitz, A., Wynberg, H., and Heuwese, F.: 1977,Tetrahedron Lett. (12) 1063. Norden, B.: 1978,J. Phys. Chem. 82, 744. Peres, A.: 1980,J. Am. Chem. Soc. 102, 7389. Piotrowska, K., Edwards, D., Mitch, A., and Dougherty, R. C.: 1980,Naturwiss. 67, 442. Pracejus, H.: 1967,Fortschr. Chem. Forsh. 84, 540. Radulescu, D. and Moga, V.: 1939,Bull. Chim., Soc. Chim. Romania [2],1, 18; 1943,Chem. Abstr. 37, 4070. Rhodes, W. and Dougherty, R. C.: 1978,J. Am. Chem. Soc. 100, 6247. Takahashi, F., Tomii, K., and Takahashi, H.: 1986,Electrochim. Acta 31, 127. Teutsch, H.: 1988, PhD Thesis, University of Bremen. Teutsch, H. and Thiemann, W.: 1986,Origins of Life 16, 420. Thiemann, W.: 1984,Origins of Life 14, 421. Thiemann, W., and Jarzak, U.: 1981,Origins of Life 11, 85. Wagniere, G. and Meier, A.: 1983,Experientia 39, 1090.