Atrophy patterns in hippocampus and amygdala subregions of depressed patients with Parkinson's disease
Springer Science and Business Media LLC - Trang 1-10 - 2024
Tóm tắt
We aimed to explore the subregional atrophy patterns of the amygdala and hippocampus in Parkinson's disease (PD) with depression and their correlation with the severity of the depressive symptom. MRI scans were obtained for 34 depressed PD patients (DPD), 22 nondepressed PD patients (NDPD), and 28 healthy controls (HC). Amygdala and hippocampal subregions were automatically segmented, and the intergroup volume difference was compared. The relationships between the volumes of the subregions and depression severity were investigated. Logistic analysis and Receiver operator characteristic curve were used to find independent predictors of DPD. Compared with the HC group, atrophy of the bilateral lateral nucleus, left accessory basal nucleus, right cortical nucleus, right central nucleus, and right medial nucleus subregions of the amygdala were visible in the DPD group, while the right lateral nucleus subregion of the amygdala was smaller in the DPD group than in the NDPD group. The DPD group showed significant atrophy in the left molecular layer, left GC-DG, left CA3, and left CA4 subregions compared with the HC group for hippocampal subregion volumes. Also, the right lateral nuclei volume and disease duration were independent predictors of DPD. To sum up, DPD patients showed atrophy in multiple amygdala subregions and left asymmetric hippocampal subregions. The decreased amygdala and hippocampal subregion volumes were correlated with the severity of depressive symptoms. The volume of right lateral nuclei and disease duration could be used as a biomarker to detect DPD.
Tài liệu tham khảo
Alarcón, G., Cservenka, A., Rudolph, M. D., Fair, D. A., & Nagel, B. J. (2015). Developmental sex differences in resting state functional connectivity of amygdala sub-regions. NeuroImage, 115, 235–244. https://doi.org/10.1016/j.neuroimage.2015.04.013
Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22. https://doi.org/10.1016/s0079-6123(07)63001-5
Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M., & LeDoux, J. E. (2001). Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning. Learning & Memory, 8(5), 229–242. https://doi.org/10.1101/lm.30901
Braak, H., Braak, E., Yilmazer, D., de Vos, R. A., Jansen, E. N., Bohl, J., & Jellinger, K. (1994). Amygdala pathology in Parkinson’s disease. Acta Neuropathologica, 88(6), 493–500. https://doi.org/10.1007/bf00296485
Brown, R. G., MacCarthy, B., Gotham, A. M., Der, G. J., & Marsden, C. D. (1988). Depression and disability in Parkinson’s disease: A follow-up of 132 cases. Psychological Medicine, 18(1), 49–55. https://doi.org/10.1017/s0033291700001872
Brück, A., Kurki, T., Kaasinen, V., Vahlberg, T., & Rinne, J. O. (2004). Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 75(10), 1467–1469. https://doi.org/10.1136/jnnp.2003.031237
Chagas, M. H. N., Tumas, V., Pena-Pereira, M. A., Machado-de-Sousa, J. P., Carlos Dos Santos, A., Sanches, R. F., . . ., & Crippa, J. A. S. (2017). Neuroimaging of major depression in Parkinson's disease: Cortical thickness, cortical and subcortical volume, and spectroscopy findings. Journal of Psychiatric Research, 90, 40–45. https://doi.org/10.1016/j.jpsychires.2017.02.010
Cole, J., Toga, A. W., Hojatkashani, C., Thompson, P., Costafreda, S. G., Cleare, A. J., . . ., & Fu, C. H. (2010). Subregional hippocampal deformations in major depressive disorder. Journal of Affective Disorders, 126(1–2), 272–277. https://doi.org/10.1016/j.jad.2010.03.004
Conrad, C. D. (2008). Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Reviews in the Neurosciences, 19(6), 395–411. https://doi.org/10.1515/revneuro.2008.19.6.395
Czéh, B., & Lucassen, P. J. (2007). What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? European Archives of Psychiatry and Clinical Neuroscience, 257(5), 250–260. https://doi.org/10.1007/s00406-007-0728-0
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34. https://doi.org/10.1038/sj.mp.4000812
Dissanayaka, N. N., White, E., O’Sullivan, J. D., Marsh, R., Pachana, N. A., & Byrne, G. J. (2014). The clinical spectrum of anxiety in Parkinson’s disease. Movement Disorders, 29(8), 967–975. https://doi.org/10.1002/mds.25937
Dooneief, G., Mirabello, E., Bell, K., Marder, K., Stern, Y., & Mayeux, R. (1992). An estimate of the incidence of depression in idiopathic Parkinson’s disease. Archives of Neurology, 49(3), 305–307. https://doi.org/10.1001/archneur.1992.00530270125028
Du, T., Li, G., Luo, H., Pan, Y., Xu, Q., & Ma, K. (2021). Hippocampal alpha-synuclein mediates depressive-like behaviors. Brain, Behavior, and Immunity, 95, 226–237. https://doi.org/10.1016/j.bbi.2021.03.020
Feldmann, A., Illes, Z., Kosztolanyi, P., Illes, E., Mike, A., Kover, F., . . ., & Nagy, F. (2008). Morphometric changes of gray matter in Parkinson's disease with depression: A voxel-based morphometry study. Movement Disorders, 23(1), 42–46. https://doi.org/10.1002/mds.21765
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Groll, C., Jäger, M., . . ., & Möller, H. J. (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry, 159(7), 1112–1118. https://doi.org/10.1176/appi.ajp.159.7.1112
Goossens, L., Kukolja, J., Onur, O. A., Fink, G. R., Maier, W., Griez, E., . . ., & Hurlemann, R. (2009). Selective processing of social stimuli in the superficial amygdala. Human Brain Mapping, 30(10), 3332–3338. https://doi.org/10.1002/hbm.20755
Goto, M., Kamagata, K., Hatano, T., Hattori, N., Abe, O., Aoki, S., . . ., & Gomi, T. (2018). Depressive symptoms in Parkinson's disease are related to decreased left hippocampal volume: Correlation with the 15-item shortened version of the Geriatric Depression Scale. Acta Radiologica, 59(3), 341–345. https://doi.org/10.1177/0284185117719100
Györfi, O., Nagy, H., Bokor, M., Moustafa, A. A., Rosenzweig, I., Kelemen, O., & Kéri, S. (2017). Reduced CA2-CA3 hippocampal subfield volume is related to depression and normalized by l-DOPA in newly diagnosed Parkinson’s disease. Frontiers in Neurology, 8, 84. https://doi.org/10.3389/fneur.2017.00084
Hanganu, A., Bruneau, M. A., Degroot, C., Bedetti, C., Mejia-Constain, B., Lafontaine, A. L., . . ., & Monchi, O. (2017). Depressive symptoms in Parkinson's disease correlate with cortical atrophy over time. Brain and Cognition, 111, 127–133. https://doi.org/10.1016/j.bandc.2016.11.001
Harding, A. J., Stimson, E., Henderson, J. M., & Halliday, G. M. (2002). Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain, 125(Pt 11), 2431–2445. https://doi.org/10.1093/brain/awf251
Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., & Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 73(21), 1738–1745. https://doi.org/10.1212/WNL.0b013e3181c34b47
Huang, P., Xuan, M., Gu, Q., Yu, X., Xu, X., Luo, W., & Zhang, M. (2015). Abnormal amygdala function in Parkinson’s disease patients and its relationship to depression. Journal of Affective Disorders, 183, 263–268. https://doi.org/10.1016/j.jad.2015.05.029
Huang, Y., Coupland, N. J., Lebel, R. M., Carter, R., Seres, P., Wilman, A. H., & Malykhin, N. V. (2013). Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biological Psychiatry, 74(1), 62–68. https://doi.org/10.1016/j.biopsych.2013.01.005
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., . . ., & Van Leemput, K. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042
Jacobs, B. L., van Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5(3), 262–269. https://doi.org/10.1038/sj.mp.4000712
Jellinger, K. A. (2012). Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Movement Disorders, 27(1), 8–30. https://doi.org/10.1002/mds.23795
Kenwood, M. M., & Kalin, N. H. (2021). Nonhuman primate models to explore mechanisms underlying early-life temperamental anxiety. Biological Psychiatry, 89(7), 659–671. https://doi.org/10.1016/j.biopsych.2020.08.028
Kim, H., Han, K. M., Choi, K. W., Tae, W. S., Kang, W., Kang, Y., . . ., & Ham, B. J. (2021). Volumetric alterations in subregions of the amygdala in adults with major depressive disorder. Journal of Affective Disorders, 295, 108–115. https://doi.org/10.1016/j.jad.2021.08.012
Kronmüller, K. T., Schröder, J., Köhler, S., Götz, B., Victor, D., Unger, J., . . ., & Pantel, J. (2009). Hippocampal volume in first episode and recurrent depression. Psychiatry Research, 174(1), 62–66. https://doi.org/10.1016/j.pscychresns.2008.08.001
Liao, H., Yi, J., Cai, S., Shen, Q., Liu, Q., Zhang, L., . . ., & Tan, C. (2021). Changes in Degree Centrality of Network Nodes in Different Frequency Bands in Parkinson's Disease With Depression and Without Depression. Frontiers in Neuroscience, 15, 638554. https://doi.org/10.3389/fnins.2021.638554
Lim, J., Bang, Y., & Choi, H. J. (2018). Abnormal hippocampal neurogenesis in Parkinson’s disease: Relevance to a new therapeutic target for depression with Parkinson’s disease. Archives of Pharmacal Research, 41(10), 943–954. https://doi.org/10.1007/s12272-018-1063-x
Lin, H., Cai, X., Zhang, D., Liu, J., Na, P., & Li, W. (2020). Functional connectivity markers of depression in advanced Parkinson’s disease. Neuroimage Clinical, 25, 102130. https://doi.org/10.1016/j.nicl.2019.102130
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198–202. https://doi.org/10.1016/j.conb.2004.03.015
Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., . . ., & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement Disorders, 30(12), 1591–1601. https://doi.org/10.1002/mds.26424
Roddy, D. W., Farrell, C., Doolin, K., Roman, E., Tozzi, L., Frodl, T., . . ., & O'Hanlon, E. (2019). The hippocampus in depression: More than the sum of its parts? Advanced hippocampal substructure segmentation in depression. Biological Psychiatry, 85(6), 487–497. https://doi.org/10.1016/j.biopsych.2018.08.021
Saygin, Z. M., Kliemann, D., Iglesias, J. E., van der Kouwe, A. J. W., Boyd, E., Reuter, M., . . ., & Augustinack, J. C. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. Neuroimage, 155, 370–382. https://doi.org/10.1016/j.neuroimage.2017.04.046
Shulman, L. M., Taback, R. L., Rabinstein, A. A., & Weiner, W. J. (2002). Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Parkinsonism & Related Disorders, 8(3), 193–197. https://doi.org/10.1016/s1353-8020(01)00015-3
Skórzewska, A., Lehner, M., Wisłowska-Stanek, A., Turzyńska, D., Sobolewska, A., Krząścik, P., & Płaźnik, A. (2015). GABAergic control of the activity of the central nucleus of the amygdala in low- and high-anxiety rats. Neuropharmacology, 99, 566–576. https://doi.org/10.1016/j.neuropharm.2015.08.039
Stepan, J., Dine, J., & Eder, M. (2015). Functional optical probing of the hippocampal trisynaptic circuit in vitro: Network dynamics, filter properties, and polysynaptic induction of CA1 LTP. Frontiers in Neuroscience, 9, 160. https://doi.org/10.3389/fnins.2015.00160
Surdhar, I., Gee, M., Bouchard, T., Coupland, N., Malykhin, N., & Camicioli, R. (2012). Intact limbic-prefrontal connections and reduced amygdala volumes in Parkinson’s disease with mild depressive symptoms. Parkinsonism & Related Disorders, 18(7), 809–813. https://doi.org/10.1016/j.parkreldis.2012.03.008
Swanson, L. W., & Petrovich, G. D. (1998). What is the amygdala? Trends in Neurosciences, 21(8), 323–331. https://doi.org/10.1016/s0166-2236(98)01265-x
van Mierlo, T. J., Chung, C., Foncke, E. M., Berendse, H. W., & van den Heuvel, O. A. (2015). Depressive symptoms in Parkinson’s disease are related to decreased hippocampus and amygdala volume. Movement Disorders, 30(2), 245–252. https://doi.org/10.1002/mds.26112
Vriend, C., Boedhoe, P. S., Rutten, S., Berendse, H. W., van der Werf, Y. D., & van den Heuvel, O. A. (2016). A smaller amygdala is associated with anxiety in Parkinson’s disease: A combined FreeSurfer-VBM study. Journal of Neurology, Neurosurgery and Psychiatry, 87(5), 493–500. https://doi.org/10.1136/jnnp-2015-310383
Yao, Z., Fu, Y., Wu, J., Zhang, W., Yu, Y., Zhang, Z., . . ., & Hu, B. (2020). Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behavior, 14(3), 653–667. https://doi.org/10.1007/s11682-018-0003-1