Atrogin-1, MuRF-1, and sarcopenia
Tóm tắt
Từ khóa
Tài liệu tham khảo
R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, F. Keime Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12(4), 249–256 (2011). doi: 10.1016/j.jamda.2011.01.003
I. Janssen, The epidemiology of sarcopenia. Clin. Geriatr. Med. 27(3), 355–363 (2011). doi: 10.1016/j.cger.2011.03.004
C.J. Evans, C.-F. Chiou, K.A. Fitzgerald, W.J. Evans, B.R. Ferrell, W. Dale, L.P. Fried, S.R. Gandra, B. Dennee-Sommers, D.L. Patrick, Development of a new patient-reported outcome measure in sarcopenia. J. Am. Med. Dir. Assoc. 12(3), 226–233 (2011). doi: 10.1016/j.jamda.2010.09.010
I. Janssen, D.S. Shepard, P.T. Katzmarzyk, R. Roubenoff, The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52(1), 80–85 (2004)
J.A. Faulkner, C.S. Davis, C.L. Mendias, S.V. Brooks, The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin. J. Sport Med. 18(6), 501–507 (2008). doi: 10.1097/JSM.0b013e3181845f1c
I. Janssen, S.B. Heymsfield, Z.M. Wang, R. Ross, Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89(1), 81–88 (2000)
J. Lexell, Human aging, muscle mass, and fiber type composition. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 50, 11–16 (1995)
G.A. Power, B.H. Dalton, D.G. Behm, A.A. Vandervoort, T.J. Doherty, C.L. Rice, Motor unit number estimates in masters runners: use it or lose it? Med. Sci. Sports Exerc. 42(9), 1644–1650 (2010). doi: 10.1249/MSS.0b013e3181d6f9e9
S. Trappe, P. Gallagher, M. Harber, J. Carrithers, J. Fluckey, T. Trappe, Single muscle fibre contractile properties in young and old men and women. J. Physiol. 552(Pt 1), 47–58 (2003). doi: 10.1113/jphysiol.2003.044966
D.R. Claflin, L.M. Larkin, P.S. Cederna, J.F. Horowitz, N.B. Alexander, N.M. Cole, A.T. Galecki, S. Chen, L.V. Nyquist, B.M. Carlson, J.A. Faulkner, J.A. Ashton-Miller, Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J. Appl. Physiol. 111(4), 1021–1030 (2011). doi: 10.1152/japplphysiol.01119.2010
J. Lexell, C.C. Taylor, M. Sjostrom, What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84(2–3), 275–294 (1988)
F. Favier, H. Benoit, D. Freyssenet, Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflügers Archiv. 456(3), 587–600 (2008). doi: 10.1007/s00424-007-0423-z
T.J. Hawke, D.J. Garry, Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91(2), 534–551 (2001)
I.M. Conboy, T.A. Rando, Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4(3), 407–410 (2005)
F. Kadi, N. Charifi, C. Denis, J. Lexell, Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 29(1), 120–127 (2004). doi: 10.1002/mus.10510
B.M. Carlson, J.A. Faulkner, Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256(6 Pt 1), C1262–C1266 (1989)
I.M. Conboy, M.J. Conboy, A.J. Wagers, E.R. Girma, I.L. Weissman, T.A. Rando, Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027), 760–764 (2005). doi: 10.1038/nature03260
V. Mouly, A. Aamiri, A. Bigot, R.N. Cooper, S. Di Donna, D. Furling, T. Gidaro, V. Jacquemin, K. Mamchaoui, E. Negroni, S. Périé, V. Renault, S.D. Silva-Barbosa, G.S. Butler-Browne, The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol. Scand. 184(1), 3–15 (2005). doi: 10.1111/j.1365-201X.2005.01417.x
R.M. Reznick, H. Zong, J. Li, K. Morino, I.K. Moore, H.J. Yu, Z.X. Liu, J. Dong, K.J. Mustard, S.A. Hawley, D. Befroy, M. Pypaert, D.G. Hardie, L.H. Young, G.I. Shulman, Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5(2), 151–156 (2007). doi: 10.1016/j.cmet.2007.01.008
U.T. Brunk, A. Terman, The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269(8), 1996–2002 (2002)
E. Marzetti, J.M. Lawler, A. Hiona, T. Manini, A.Y. Seo, C. Leeuwenburgh, Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic. Biol. Med. 44(2), 160–168 (2008). doi: 10.1016/j.freeradbiomed.2007.05.028
E. Marzetti, J.C.Y. Hwang, H.A. Lees, S.E. Wohlgemuth, E.E. Dupont-Versteegden, C.S. Carter, R. Bernabei, C. Leeuwenburgh, Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim. Biophys. Acta 1800(3), 235–244 (2010). doi: 10.1016/j.bbagen.2009.05.007
A. Musaro, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E.R. Barton, H.L. Sweeney, N. Rosenthal, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27(2), 195–200 (2001). doi: 10.1038/84839
M.D. Mavalli, D.J. DiGirolamo, Y. Fan, R.C. Riddle, K.S. Campbell, T. van Groen, S.J. Frank, M.A. Sperling, K.A. Esser, M.M. Bamman, T.L. Clemens, Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Investig. 120(11), 4007–4020 (2010). doi: 10.1172/JCI42447
Mozzetti Marone, D. Ritis, Scambia Pierelli, Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3, 19–25 (2001). doi: 10.1251/bpo20
S. Schiaffino, C. Mammucari, Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1(1), 4 (2011). doi: 10.1186/2044-5040-1-4
M. Miyazaki, J.J. McCarthy, K.A. Esser, Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J. 277(9), 2180–2191 (2010). doi: 10.1111/j.1742-4658.2010.07635.x
M. Andjelkovic, D.R. Alessi, R. Meier, A. Fernandez, N.J. Lamb, M. Frech, P. Cron, P. Cohen, J.M. Lucocq, B.A. Hemmings, Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272(50), 31515–31524 (1997)
I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2(7), 489–501 (2002). doi: 10.1038/nrc839
G. Goldspink, Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology 20, 232–238 (2005). doi: 10.1152/physiol.00004.2005
R.W. Matheny, B.C. Nindl, M.L. Adamo, Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151(3), 865–875 (2010). doi: 10.1210/en.2009-1217
M. Vinciguerra, A. Musarò, N. Rosenthal, Regulation of muscle atrophy in aging and disease. Adv. Exp. Med. Biol. 694, 211–233 (2010)
S.C. Bodine, E. Latres, S. Baumhueter, V.K. Lai, L. Nunez, B.A. Clarke, W.T. Poueymirou, F.J. Panaro, E. Na, K. Dharmarajan, Z.Q. Pan, D.M. Valenzuela, T.M. DeChiara, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547), 1704–1708 (2001). doi: 10.1126/science.1065874
C. Rommel, S.C. Bodine, B.A. Clarke, R. Rossman, L. Nunez, T.N. Stitt, G.D. Yancopoulos, D.J. Glass, Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3(11), 1009–1013 (2001). doi: 10.1038/ncb1101-1009
M. Sandri, Signaling in muscle atrophy and hypertrophy. Physiology 23, 160–170 (2008). doi: 10.1152/physiol.00041.2007
Y.-H. Song, M. Godard, Y. Li, S.R. Richmond, N. Rosenthal, P. Delafontaine, Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J. Investig. Med. 53(3), 135–142 (2005)
R.A. Frost, C.H. Lang, mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology 26(2), 83–96 (2011). doi: 10.1152/physiol.00044.2010
K. Inoki, Y. Li, T. Zhu, J. Wu, K.L. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4(9), 648–657 (2002). doi: 10.1038/ncb839
B. Raught, F. Peiretti, A.C. Gingras, M. Livingstone, D. Shahbazian, G.L. Mayeur, R.D. Polakiewicz, N. Sonenberg, J.W. Hershey, Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23(8), 1761–1769 (2004). doi: 10.1038/sj.emboj.7600193
R. Zoncu, A. Efeyan, D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011). doi: 10.1038/nrm3025
K. Hara, K. Yonezawa, M.T. Kozlowski, T. Sugimoto, K. Andrabi, Q.P. Weng, M. Kasuga, I. Nishimoto, J. Avruch, Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272(42), 26457–26463 (1997)
Y. Izumiya, T. Hopkins, C. Morris, K. Sato, L. Zeng, J. Viereck, J.A. Hamilton, N. Ouchi, N.K. LeBrasseur, K. Walsh, Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7(2), 159–172 (2008). doi: 10.1016/j.cmet.2007.11.003
G. Pallafacchina, E. Calabria, A.L. Serrano, J.M. Kalhovde, S. Schiaffino, A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. USA 99(14), 9213–9218 (2002). doi: 10.1073/pnas.142166599
M. Miyazaki, K.A. Esser, Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J. Appl. Physiol. 106(4), 1367–1373 (2009). doi: 10.1152/japplphysiol.91355.2008
E. Marzetti, G. Privitera, V. Simili, S.E. Wohlgemuth, L. Aulisa, M. Pahor, C. Leeuwenburgh, Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. Scientific World J. 10, 340–349 (2010). doi: 10.1100/tsw.2010.27
T.W. Buford, S.D. Anton, A.R. Judge, E. Marzetti, S.E. Wohlgemuth, C.S. Carter, C. Leeuwenburgh, M. Pahor, T.M. Manini, Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res. Rev. 9(4), 369–383 (2010). doi: 10.1016/j.arr.2010.04.004
A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628), 83–90 (1997). doi: 10.1038/387083a0
C.L. Mendias, J.E. Marcin, D.R. Calerdon, J.A. Faulkner, Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J. Appl. Physiol. 101(3), 898–905 (2006). doi: 10.1152/japplphysiol.00126.2006
B.A. Gentry, J.A. Ferreira, C.L. Phillips, M. Brown, Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 43(1), 49–57 (2011). doi: 10.1002/mus.21796
T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, S.-J. Lee, Induction of cachexia in mice by systemically administered myostatin. Science 296(5572), 1486–1488 (2002). doi: 10.1126/science.1069525
C.L. Mendias, J.P. Gumucio, M.E. Davis, C.W. Bromley, C.S. Davis, S.V. Brooks, Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45(1), 55–59 (2012). doi: 10.1002/mus.22232
S.J. Lee, Y.S. Lee, T.A. Zimmers, A. Soleimani, M.M. Matzuk, K. Tsuchida, R.D. Cohn, E.R. Barton, Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24(10), 1998–2008 (2010). doi: 10.1210/me.2010-0127
S.J. Lee, A.C. McPherron, Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 98(16), 9306–9311 (2001). doi: 10.1073/pnas.151270098
B. Philip, Z. Lu, Y. Gao, Regulation of GDF-8 signaling by the p38 MAPK. Cell. Signal. 17(3), 365–375 (2005). doi: 10.1016/j.cellsig.2004.08.003
R. Sartori, G. Milan, M. Patron, C. Mammucari, B. Blaauw, R. Abraham, M. Sandri, Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296(6), C1248–C1257 (2009). doi: 10.1152/ajpcell.00104.2009
Y. Shi, J. Massagué, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6), 685–700 (2003)
L. Yu, M.C. Hébert, Y.E. Zhang, TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21(14), 3749–3759 (2002). doi: 10.1093/emboj/cdf366
X. Zhu, S. Topouzis, L.-F. Liang, R.L. Stotish, Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26(6), 262–272 (2004). doi: 10.1016/j.cyto.2004.03.007
H.D. Kollias, J.C. McDermott, Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. 104(3), 579–587 (2008). doi: 10.1152/japplphysiol.01091.2007
R.R. Gomis, C. Alarcón, W. He, Q. Wang, J. Seoane, A. Lash, J. Massagué, A FoxO-Smad synexpression group in human keratinocytes. Proc. Natl. Acad. Sci. USA 103(34), 12747–12752 (2006). doi: 10.1073/pnas.0605333103
J. Seoane, H.-V. Le, L. Shen, S.A. Anderson, J. Massagué, Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2), 211–223 (2004)
T. Zarubin, J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15(1), 11–18 (2005). doi: 10.1038/sj.cr.7290257
A. Amirouche, A.-C. Durieux, S. Banzet, N. Koulmann, R. Bonnefoy, C. Mouret, X. Bigard, A. Peinnequin, D. Freyssenet, Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150(1), 286–294 (2009). doi: 10.1210/en.2008-0959
C. McFarlane, E. Plummer, M. Thomas, A. Hennebry, M. Ashby, N. Ling, H. Smith, M. Sharma, R. Kambadur, Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 209(2), 501–514 (2006). doi: 10.1002/jcp.20757
A.U. Trendelenburg, A. Meyer, D. Rohner, J. Boyle, S. Hatakeyama, D.J. Glass, Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296(6), C1258–C1270 (2009). doi: 10.1152/ajpcell.00105.2009
W. Yang, Y. Zhang, Y. Li, Z. Wu, D. Zhu, Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J. Biol. Chem. 282(6), 3799–3808 (2007). doi: 10.1074/jbc.M610185200
M.D. Gomes, S.H. Lecker, R.T. Jagoe, A. Navon, A.L. Goldberg, Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 98(25), 14440–14445 (2001). doi: 10.1073/pnas.251541198
S. Lokireddy, C. McFarlane, X. Ge, H. Zhang, S.K. Sze, M. Sharma, R. Kambadur, Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting. Mol. Endocrinol. 25(11), 1936–1949 (2011). doi: 10.1210/me.2011-1124
C.L. Mendias, J.P. Gumucio, E.B. Lynch, Mechanical loading and TGF-beta change the expression of multiple miRNAs in tendon fibroblasts. J. Appl. Physiol. (2012). doi: 10.1152/japplphysiol.00301.2012
C.L. Mendias, E. Kayupov, J.R. Bradley, S.V. Brooks, D.R. Claflin, Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J. Appl. Physiol. 111(1), 185–191 (2011). doi: 10.1152/japplphysiol.00126.2011
J.M. Sacheck, J.-P.K. Hyatt, A. Raffaello, R.T. Jagoe, R.R. Roy, V.R. Edgerton, S.H. Lecker, A.L. Goldberg, Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 21(1), 140–155 (2007). doi: 10.1096/fj.06-6604com
Y.-P. Li, Y. Chen, J. John, J. Moylan, B. Jin, D.L. Mann, M.B. Reid, TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19(3), 362–370 (2005). doi: 10.1096/fj.04-2364com
J.M. McClung, A.R. Judge, S.K. Powers, Z. Yan, p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol. 298(3), C542–C549 (2010). doi: 10.1152/ajpcell.00192.2009
T.J. McLoughlin, S.M. Smith, A.D. DeLong, H. Wang, T.G. Unterman, K.A. Esser, FoxO1 induces apoptosis in skeletal myotubes in a DNA-binding-dependent manner. Am. J. Physiol. Cell Physiol. 297(3), C548–C555 (2009). doi: 10.1152/ajpcell.00502.2008
S.M. Senf, S.L. Dodd, A.R. Judge, FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am. J. Physiol. Cell Physiol. 298(1), C38–C45 (2010). doi: 10.1152/ajpcell.00315.2009
T.N. Stitt, D. Drujan, B.A. Clarke, F. Panaro, Y. Timofeyva, W.O. Kline, M. Gonzalez, G.D. Yancopoulos, D.J. Glass, The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14(3), 395–403 (2004)
A.R. Conery, Y. Cao, E.A. Thompson, C.M. Townsend, T.C. Ko, K. Luo, Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6(4), 366–372 (2004)
F. Haddad, G.R. Adams, Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J. Appl. Physiol. 100(4), 1188–1203 (2006). doi: 10.1152/japplphysiol.01227.2005
S. Clavel, A.-S. Coldefy, E. Kurkdjian, J. Salles, I. Margaritis, B. Derijard, Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 127(10), 794–801 (2006). doi: 10.1016/j.mad.2006.07.005
E. Edström, M. Altun, M. Hägglund, B. Ulfhake, Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 61(7), 663–674 (2006)
J.A. Rahnert, Q. Luo, E.M. Balog, A.J. Sokoloff, T.J. Burkholder, Changes in growth-related kinases in head, neck and limb muscles with age. Exp. Gerontol. 46(4), 282–291 (2011). doi: 10.1016/j.exger.2010.11.004
M. Gaugler, A. Brown, E. Merrell, M. DiSanto-Rose, J.A. Rathmacher, T.H. Reynolds, PKB signaling and atrogene expression in skeletal muscle of aged mice. J. Appl. Physiol. 111(1), 192–199 (2011). doi: 10.1152/japplphysiol.00175.2011
S.R. Kimball, J.P. O'Malley, J.C. Anthony, S.J. Crozier, L.S. Jefferson, Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am. J. Physiol. Endocrinol. Metab. 287(4), E772–E780 (2004). doi: 10.1152/ajpendo.00535.2003
A. Chalé-Rush, E.P. Morris, T.L. Kendall, N.E. Brooks, R.A. Fielding, Effects of chronic overload on muscle hypertrophy and mTOR signaling in young adult and aged rats. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 64(12), 1232–1239 (2009). doi: 10.1093/gerona/glp146
K.G. O’Connor, J.D. Tobin, S.M. Harman, C.C. Plato, T.A. Roy, S.S. Sherman, M.R. Blackman, Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 53(3), M176–M182 (1998)
M. Hameed, R.W. Orrell, M. Cobbold, G. Goldspink, S.D.R. Harridge, Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J. Physiol. 547(Pt 1), 247–254 (2003). doi: 10.1113/jphysiol.2002.032136
B. Léger, W. Derave, K. De Bock, P. Hespel, A.P. Russell, Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 11(1), 163B–175B (2008). doi: 10.1089/rej.2007.0588
C. Guillet, M. Prod’homme, M. Balage, P. Gachon, C. Giraudet, L. Morin, J. Grizard, Y. Boirie, Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 18(13), 1586–1587 (2004). doi: 10.1096/fj.03-1341fje
M.J. Drummond, H.C. Dreyer, B. Pennings, C.S. Fry, S. Dhanani, E.L. Dillon, M. Sheffield-Moore, E. Volpi, B.B. Rasmussen, Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J. Appl. Physiol. 104(5), 1452–1461 (2008). doi: 10.1152/japplphysiol.00021.2008
M.E. Carlson, M.J. Conboy, M. Hsu, L. Barchas, J. Jeong, A. Agrawal, A.J. Mikels, S. Agrawal, D.V. Schaffer, I.M. Conboy, Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8(6), 676–689 (2009). doi: 10.1111/j.1474-9726.2009.00517.x
M.E. Carlson, M. Hsu, I.M. Conboy, Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454(7203), 528–532 (2008). doi: 10.1038/nature07034
M. Altun, H.C. Besche, H.S. Overkleeft, R. Piccirillo, M.J. Edelmann, B.M. Kessler, A.L. Goldberg, B. Ulfhake, Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J. Biol. Chem. 285(51), 39597–39608 (2010). doi: 10.1074/jbc.M110.129718
M. Bossola, F. Pacelli, P. Costelli, A. Tortorelli, F. Rosa, G.B. Doglietto, Proteasome activities in the rectus abdominis muscle of young and older individuals. Biogerontology 9(4), 261–268 (2008). doi: 10.1007/s10522-008-9135-9
D. Cai, K.K.H. Lee, M. Li, M.K. Tang, K.M. Chan, Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch. Biochem. Biophys. 425(1), 42–50 (2004). doi: 10.1016/j.abb.2004.02.027
A. Ratkevicius, A. Joyson, I. Selmer, T. Dhanani, C. Grierson, A.M. Tommasi, A. Devries, P. Rauchhaus, D. Crowther, S. Alesci, P. Yaworsky, F. Gilbert, T.W. Redpath, J. Brady, K.C.H. Fearon, D.M. Reid, C.A. Greig, H. Wackerhage, Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. (2011). doi: 10.1093/gerona/glr025
U. Raue, D. Slivka, B. Jemiolo, C. Hollon, S. Trappe, Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 62(12), 1407–1412 (2007)
S.A. Whitman, M.J. Wacker, S.R. Richmond, M.P. Godard, Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflügers Archiv. 450(6), 437–446 (2005). doi: 10.1007/s00424-005-1473-8
L. Di Luigi, F. Romanelli, P. Sgrò, A. Lenzi, Andrological aspects of physical exercise and sport medicine. Endocrine (2012). doi: 10.1007/s12020-012-9655-6
S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine (2012). doi: 10.1007/s12020-012-9676-1
C.K. Liu, R.A. Fielding, Exercise as an intervention for frailty. Clin. Geriatr. Med. 27(1), 101–110 (2011). doi: 10.1016/j.cger.2010.08.001
C.S. Fry, M.J. Drummond, E.L. Glynn, J.M. Dickinson, D.M. Gundermann, K.L. Timmerman, D.K. Walker, S. Dhanani, E. Volpi, B.B. Rasmussen, Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 1(1), 11 (2011). doi: 10.1186/2044-5040-1-11
U. Raue, D. Slivka, B. Jemiolo, C. Hollon, S. Trappe, Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J. Appl. Physiol. 101(1), 53–59 (2006). doi: 10.1152/japplphysiol.01616.2005
S. Trappe, M. Godard, P. Gallagher, C. Carroll, G. Rowden, D. Porter, Resistance training improves single muscle fiber contractile function in older women. Am. J. Physiol. Cell Physiol. 281(2), C398–C406 (2001)
S. Trappe, D. Williamson, M. Godard, D. Porter, G. Rowden, D. Costill, Effect of resistance training on single muscle fiber contractile function in older men. J. Appl. Physiol. 89(1), 143–152 (2000)
D.L. Williamson, U. Raue, D.R. Slivka, S. Trappe, Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 65(4), 335–343 (2010). doi: 10.1093/gerona/glq005
A.R. Konopka, M.D. Douglass, L.A. Kaminsky, B. Jemiolo, T.A. Trappe, S. Trappe, M.P. Harber, Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 65(11), 1201–1207 (2010). doi: 10.1093/gerona/glq109
A.R. Konopka, T.A. Trappe, B. Jemiolo, S.W. Trappe, M.P. Harber, Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 66(8), 835–841 (2011). doi: 10.1093/gerona/glr088
K.L. Bennell, R.S. Hinman, A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J. Sci. Med. Sport 14(1), 4–9 (2011). doi: 10.1016/j.jsams.2010.08.002
M.A. Williams, W.L. Haskell, P.A. Ades, E.A. Amsterdam, V. Bittner, B.A. Franklin, M. Gulanick, S.T. Laing, K.J. Stewart, Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116(5), 572–584 (2007). doi: 10.1161/CIRCULATIONAHA.107.185214
G.E. Butterfield, J. Thompson, M.J. Rennie, R. Marcus, R.L. Hintz, A.R. Hoffman, Effect of rhGH and rhIGF-I treatment on protein utilization in elderly women. Am. J. Physiol. 272(1 Pt 1), E94–E99 (1997)
N. Lebrasseur, T. Schelhorn, B. Bernardo, P. Cosgrove, P. Loria, T. Brown, Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. (2009). doi: 10.1093/gerona/glp068
K.T. Murphy, R. Koopman, T. Naim, B. Léger, J. Trieu, C. Ibebunjo, G.S. Lynch, Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J. 24(11), 4433–4442 (2010). doi: 10.1096/fj.10-159608
R.D. Cohn, C. van Erp, J.P. Habashi, A.A. Soleimani, E.C. Klein, M.T. Lisi, M. Gamradt, C.M. ap Rhys, T.M. Holm, B.L. Loeys, F. Ramirez, D.P. Judge, C.W. Ward, H.C. Dietz, Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13(2), 204–210 (2007). doi: 10.1038/nm1536