Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding

The International Journal of Advanced Manufacturing Technology - Tập 103 Số 1-4 - Trang 879-890 - 2019
Avik Samanta1, Shaoping Xiao1, Ninggang Shen2, Jingjing Li3, Hongtao Ding1
1Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA
2Tesla, Sparks, NV, 89434, USA
3The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Penn State University, State College, PA, 16802, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kazuhiro N, Masao U (2002) Needs and prospects of dissimilar metal joining and welding. J Japan Weld Soc 71:418–421. https://doi.org/10.2207/qjjws1943.71.418

Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann - Manuf Technol 64:679–699. https://doi.org/10.1016/j.cirp.2015.05.006

Lee SS, Kim T-H, Hu SJ et al (2013) Characterization of joint quality in ultrasonic welding of battery tabs. ASME J Manuf Sci Eng 135:021004. https://doi.org/10.1115/1.4023364

Kicukov E, Gursel A (2015) Ultrasonic welding of dissimilar materials: a review. Period Eng Nat Sci 3:28–36. https://doi.org/10.21533/pen.v3i1.44

Li J, Han L, Zhong J (2008) Short-circuit diffusion of ultrasonic bonding interfaces in microelectronic packaging. Surf Interface Anal 40:953–957. https://doi.org/10.1002/sia.2840

Zhao YY, Li D, Zhang YS (2013) Effect of welding energy on interface zone of Al–Cu ultrasonic welded joint. Sci Technol Weld Join 18:354–360. https://doi.org/10.1179/1362171813Y.0000000114

Wu X, Liu T, Cai W (2015) Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds. SME J Manuf Process 20:321–331. https://doi.org/10.1016/j.jmapro.2015.06.002

Yang Y, Janaki Ram GD, Stucker BE (2009) Bond formation and fiber embedment during ultrasonic consolidation. J Mater Process Technol 209:4915–4924. https://doi.org/10.1016/j.jmatprotec.2009.01.014

Ginzburg S, Mitskevich A, Nosov Y (1967) Formation of the joint in ultrasonic welding. Weld Prod 13:45–47

Chang UI, Frisch J (1974) On optimization of some parameters in ultrasonic metal welding. Weld J 53:24–35

Lu Y, Song H, Taber GA, Foster DR, Daehn GS, Zhang W (2016) In-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetry. J Mater Process Technol 231:431–440. https://doi.org/10.1016/j.jmatprotec.2016.01.006

Fujii HT, Goto Y, Sato YS, Kokawa H (2016) Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel. Scr Mater 116:135–138. https://doi.org/10.1016/j.scriptamat.2016.02.004

Zhang Z, Wang K, Li J, Yu Q, Cai W (2017) Investigation of interfacial layer for ultrasonic spot welded aluminum to copper joints. Sci Rep 7:12505. https://doi.org/10.1038/s41598-017-12164-2

Yang JW, Cao B, He XC, Luo HS (2014) Microstructure evolution and mechanical properties of Cu–Al joints by ultrasonic welding. Sci Technol Weld Join 19:500–504. https://doi.org/10.1179/1362171814Y.0000000218

Beyer W (1969) The bonding process in the ultrasonic welding of metals. Schweisstechnik 19:16–20

Watanabe T, Sakuyama H, Yanagisawa A (2009) Ultrasonic welding between mild steel sheet and Al–Mg alloy sheet. J Mater Process Technol 209:5475–5480. https://doi.org/10.1016/j.jmatprotec.2009.05.006

Watanabe A, Yanagisawa T, Konuma S et al (1999) The effect of oxide film on the strength of an ultrasonically welded joint and welding process - study of the ultrasonic welding of dissimilar metals (2nd report). Weld Int 13:936–944. https://doi.org/10.1080/09507119909452077

Xu L, Wang L, Chen Y-C, Robson JD, Prangnell PB (2016) Effect of interfacial reaction on the mechanical performance of steel to aluminum dissimilar ultrasonic spot welds. Metall Mater Trans A 47:334–346. https://doi.org/10.1007/s11661-015-3179-7

Ren D, Zhao K, Pan M, Chang Y, Gang S, Zhao D (2017) Ultrasonic spot welding of magnesium alloy to titanium alloy. Scr Mater 126:58–62. https://doi.org/10.1016/j.scriptamat.2016.08.003

Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420. https://doi.org/10.1016/j.cplett.2004.04.054

Xiao S, Hou W (2006) Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Phys Rev B Condens Matter Mater Phys 73:1–7. https://doi.org/10.1103/PhysRevB.73.115406

Xiao S, Andersen DR, Han R, Hou W (2006) Studies of carbon nanotube-based oscillators using molecular dynamics. J Comput Theor Nanosci 3:142–147. https://doi.org/10.1166/jctn.2006.013

Xiao S, Hou W (2007) Studies of nanotube-based resonant oscillators through multiscale modeling and simulation. Phys Rev B Condens Matter Mater Phys 75:1–9. https://doi.org/10.1103/PhysRevB.75.125414

Ghaffari MA, Zhang Y, Xiao SP (2017) Molecular dynamics modeling and simulation of lubricant between sliding solids. J Micromechanics Mol Phys 2:1750009. https://doi.org/10.1142/S2424913017500096

Chen SY, Wu ZW, Liu KX, Li XJ, Luo N, Lu GX (2013) Atomic diffusion behavior in Cu-Al explosive welding process. J Appl Phys 113:044901. https://doi.org/10.1063/1.4775788

Konovalenko IS, Konovalenko IS, Psakhie SG (2017) Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding. 020093:020092. https://doi.org/10.1063/1.5013773

Ye YY, Biswas R, Morris JR, Bastawros A, Chandra A (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390–396. https://doi.org/10.1088/0957-4484/14/3/307

Li C, Li D, Tao X, Chen H, Ouyang Y (2014) Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Model Simul Mater Sci Eng 22:065013. https://doi.org/10.1088/0965-0393/22/6/065013

Chen SD, Soh AK, Ke FJ (2005) Molecular dynamics modeling of diffusion bonding. Scr Mater 52:1135–1140. https://doi.org/10.1016/j.scriptamat.2005.02.004

Chen S, Ke F, Zhou M, Bai Y (2007) Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al. Acta Mater 55:3169–3175. https://doi.org/10.1016/j.actamat.2006.12.040

Zhang Q, Lai WS, Liu BX (1999) Molecular dynamics study of solid state interfacial reaction in the Ni-Mo system. J Comput Mater Des 6:103–116. https://doi.org/10.1023/A:100874620

Lee SS, Kim T-H, Hu SJ et al (2015) Analysis of weld formation in multilayer ultrasonic metal welding using high-speed images. ASME J Manuf Sci Eng 137:031016. https://doi.org/10.1115/1.4029787

Shen N (2018) Microstructure prediction of severe plastic deformation manufacturing processes for metals. University of Iowa

Shen N, Samanta A, Ding H, Cai WW (2016) Simulating microstructure evolution of battery tabs during ultrasonic welding. SME J Manuf Process 23:306–314. https://doi.org/10.1016/j.jmapro.2016.04.005

Zhao J, Li H, Choi H, Cai W, Abell JA, Li X (2013) Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs. SME J Manuf Process 15:136–140. https://doi.org/10.1016/j.jmapro.2012.10.002

Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398–8410. https://doi.org/10.1103/PhysRevB.54.8398

Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

Parrinello M, Rahman A, R a PM (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer, Berlin Heidelberg

Taneja D, Volpert M, Hodaj F (2018) On the initial stages of solid state reactions in Ni/Sn-Ag solder system at 150–210 °C. J Alloys Compd 742:199–211. https://doi.org/10.1016/j.jallcom.2018.01.253

Bai L, Xue W, Li Y, Liu X, Li Y, Sun J (2018) The interfacial behaviours of all-solid-state lithium ion batteries. Ceram Int 44:7319–7328. https://doi.org/10.1016/j.ceramint.2018.01.190

Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7:4478–4485. https://doi.org/10.1166/jnn.2007.862

Soyarslan C, Bargmann S, Pradas M, Weissmüller J (2018) 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater 149:326–340. https://doi.org/10.1016/j.actamat.2018.01.005

Li H, Choi H, Ma C, Zhao J, Jiang H, Cai W, Abell JA, Li X (2013) Transient temperature and heat flux measurement in ultrasonic joining of battery tabs using thin-film microsensors. ASME J Manuf Sci Eng 135:051015. https://doi.org/10.1115/1.4024816

Chen KK, Zhang YS (2015) Numerical analysis of temperature distribution during ultrasonic welding process for dissimilar automotive alloys. Sci Technol Weld Join 20:522–531. https://doi.org/10.1179/1362171815Y.0000000022