Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy
Tài liệu tham khảo
Aubry, 2011, Energy barrier for homogeneous dislocation nucleation: comparing atomistic and continuum models, Scr. Mater., 64, 1043, 10.1016/j.scriptamat.2011.02.023
Brochard, 2010, Elastic limit for surface step dislocation nucleation in face-centered cubic metals: temperature and step height dependence, Acta Mater., 58, 4182, 10.1016/j.actamat.2010.04.009
Cai, 2016
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257
Cao, 2020, Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment, Acta Mater., 194, 283, 10.1016/j.actamat.2020.05.042
Chen, 2020, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proc. Natl. Acad. Sci. U. S. A., 117, 16199, 10.1073/pnas.1919136117
Chen, 2019, Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method, Acta Mater., 168, 436, 10.1016/j.actamat.2019.02.035
Chen, 2020, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat. Commun., 11, 826, 10.1038/s41467-020-14641-1
Chen, 2021, Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592, 712, 10.1038/s41586-021-03428-z
J.D. Cox, D.D. Wagman, and V.A. Medvedev, CODATA Key Values For Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
Cui, 2016, Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals, Acta Mater., 108, 128, 10.1016/j.actamat.2016.02.008
Dickey, 1969, Computer simulation of the lattice dynamics of solids, Phys. Rev., 188, 1407, 10.1103/PhysRev.188.1407
Ding, 2019, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574, 223, 10.1038/s41586-019-1617-1
Du, 2016, Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study, Phys. Rev. B, 94, 10.1103/PhysRevB.94.104110
Fultz, 2010, Vibrational thermodynamics of materials, Prog. Mater. Sci., 55, 247, 10.1016/j.pmatsci.2009.05.002
Gali, 2013, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39, 74, 10.1016/j.intermet.2013.03.018
Gao, 2016, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci., 82, 118, 10.1016/j.pmatsci.2016.05.002
George, 2020, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater., 188, 435, 10.1016/j.actamat.2019.12.015
George, 2019, High-entropy alloys, Nat. Rev. Mater., 4, 515, 10.1038/s41578-019-0121-4
Geslin, 2021, Journal of the mechanics and physics of solids microelasticity model of random alloys. part ii: displacement and stress correlations, J. Mech. Phys. Solids, 153
Geslin, 2021, Journal of the mechanics and physics of solids microelasticity model of random alloys. part i: mean square displacements and stresses, J. Mech. Phys. Solids, 153
Ghafarollahi, 2020, Theory of double-kink nucleation in dilute BCC alloys, Acta Mater., 196, 635, 10.1016/j.actamat.2020.07.008
Hong, 2017, Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy, Mater. Sci. Eng. A, 682, 569, 10.1016/j.msea.2016.11.078
Hong, 2021, Molecular dynamics study of the effect of moisture and porosity on thermal conductivity of tobermorite 14Å, Int. J. Therm. Sci., 159, 10.1016/j.ijthermalsci.2020.106537
Hua, 2021, Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation, Int. J. Plast., 142, 10.1016/j.ijplas.2021.102997
Kocks, 1975, Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19, 1
Kottke, 2020, Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100−xNix alloys, Acta Mater., 194, 236, 10.1016/j.actamat.2020.05.037
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Li, 2007, The mechanics and physics of defect nucleation, MRS Bull., 32, 151, 10.1557/mrs2007.48
Li, 2020, Unraveling the dislocation-precipitate interactions in high-entropy alloys, Int. J. Plast., 133, 10.1016/j.ijplas.2020.102819
Li, 2019, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10, 3563, 10.1038/s41467-019-11464-7
Li, 2018, Sample-size-dependent surface dislocation nucleation in nanoscale crystals, Acta Mater., 145, 19, 10.1016/j.actamat.2017.11.048
Li, 2021, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118, 10.1016/j.pmatsci.2021.100777
Li, 2010, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature, 464, 877, 10.1038/nature08929
Liu, 2020, Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys, J. Alloys Compd., 844, 10.1016/j.jallcom.2020.156162
Ma, 2020, Unusual dislocation behavior in high-entropy alloys, Scr. Mater., 181, 127, 10.1016/j.scriptamat.2020.02.021
Ma, 2019, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nat. Commun., 10, 5623, 10.1038/s41467-019-13311-1
Ming, 2019, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113, 255, 10.1016/j.ijplas.2018.10.005
Mishin, 2001, Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, 63, 10.1103/PhysRevB.63.224106
Moon, 2019, Strain-rate sensitivity of high-entropy alloys and its significance in deformation, Mater. Res. Lett., 7, 503, 10.1080/21663831.2019.1668489
S. Mridha, M. Sadeghilaridjani, S. Mukherjee, 2019. Activation volume and energy for dislocation nucleation in multi-principal element alloys. Metals (Basel). 9, 263. 10.3390/met9020263.
Nguyen, 2012, Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.035501
Oh, 2009, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nat. Mater., 8, 95, 10.1038/nmat2370
Pan, 2020, Effects of defects on heat conduction of graphene/hexagonal boron nitride heterointerface, Phys. Lett. A, 384, 10.1016/j.physleta.2020.126774
Pei, 2020, Statistics of the NiCoCr medium-entropy alloy: novel aspects of an old puzzle, NPJ Comput. Mater., 6, 122, 10.1038/s41524-020-00389-1
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Rao, 2015, Screw dislocation cross slip at cross-slip plane jogs and screw dipole annihilation in FCC Cu and Ni investigated via atomistic simulations, Acta Mater., 101, 10, 10.1016/j.actamat.2015.08.070
Rodney, 2011, Modeling the mechanics of amorphous solids at different length scale and time scale, Model. Simul. Mater. Sci. Eng., 19, 83001, 10.1088/0965-0393/19/8/083001
Ryu, 2011, Entropic effect on the rate of dislocation nucleation, Proc. Natl. Acad. Sci. U. S. A., 108, 5174, 10.1073/pnas.1017171108
Ryu, 2011, Predicting the dislocation nucleation rate as a function of temperature and stress, J. Mater. Res., 26, 2335, 10.1557/jmr.2011.275
Shimizu, 2007, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans., 48, 2923, 10.2320/matertrans.MJ200769
Smith, 2017, Separating the configurational and vibrational entropy contributions in metallic glasses, Nat. Phys., 13, 900, 10.1038/nphys4142
Smith, 2020, The effect of local chemical ordering on frank-read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134, 10.1016/j.ijplas.2020.102850
Srivastava, 2021, The influence of nano/micro sample size on the strain-rate sensitivity of plastic flow in tungsten, Int. J. Plast., 136, 10.1016/j.ijplas.2020.102854
Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18, 15012, 10.1088/0965-0393/18/1/015012
Togo, 2015, First principles phonon calculations in materials science, Scr. Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021
Tsai, 2013, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater., 61, 4887, 10.1016/j.actamat.2013.04.058
Vaidya, 2018, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Mater., 146, 211, 10.1016/j.actamat.2017.12.052
Varvenne, 2016, Theory of strengthening in fcc high entropy alloys, Acta Mater., 118, 164, 10.1016/j.actamat.2016.07.040
Walsh, 2021, Magnetically driven short-range order can explain anomalous measurements in CrCoNi, Proc. Natl. Acad. Sci. U. S. A., 118, 1, 10.1073/pnas.2020540118
Wang, 2020, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science, 370, 95, 10.1126/science.aba3722
Wang, 2021, Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys, Phys. Rev. B, 103
Wang, 2015, Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals, Proc. Natl. Acad. Sci. U. S. A., 112, 13502, 10.1073/pnas.1518200112
Warner, 2007, Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals, Nat. Mater., 6, 876, 10.1038/nmat2030
Wu, 2014, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81, 428, 10.1016/j.actamat.2014.08.026
Wu, 2016, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Mater., 120, 108, 10.1016/j.actamat.2016.08.047
J. Xiao, N. Wu, O. Ojo, C. Deng, 2020. Dislocation nucleation in CoNiCrFeMn high entropy alloy. Materialia 12, 100749. 10.1016/j.mtla.2020.100749.
Yang, 2010, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires, Nano Today, 5, 85, 10.1016/j.nantod.2010.02.002
Ye, 2016, High-entropy alloy: challenges and prospects, Mater. Today, 19, 349, 10.1016/j.mattod.2015.11.026
Ye, 2018, Atomic-scale distorted lattice in chemically disordered equimolar complex alloys, Acta Mater., 150, 182, 10.1016/j.actamat.2018.03.008
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Yin, 2020, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nat. Commun., 11, 2507, 10.1038/s41467-020-16083-1
Yin, 2021, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order, Nat. Commun., 12, 4873, 10.1038/s41467-021-25134-0
Zhang, 2013, Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material, J. Mech. Phys. Solids, 61, 1670, 10.1016/j.jmps.2013.04.004
Zhang, 2016, Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation, J. Chem. Phys., 145, 10.1063/1.4962019
Zhang, 2021, Chemical fluctuation enabling strength-plasticity synergy in metastable single-phase high entropy alloy film with gigapascal yield strength, Int. J. Plast., 139, 10.1016/j.ijplas.2021.102951
Zhang, 2021, Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars, Nano Lett., 21, 3671, 10.1021/acs.nanolett.1c00444
Zhang, 2020, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581, 283, 10.1038/s41586-020-2275-z
Zhao, 2021, Anomalous dislocation core structure in shock compressed bcc high-entropy alloys, Acta Mater., 209, 10.1016/j.actamat.2021.116801
Zhu, 2010, Ultra-strength materials, Prog. Mater. Sci., 55, 710, 10.1016/j.pmatsci.2010.04.001
Zhu, 2009, Mechanics of ultra-strength materials, MRS Bull., 34, 167, 10.1557/mrs2009.47
Zhu, 2007, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals, Proc. Natl. Acad. Sci. U. S. A., 104, 3031, 10.1073/pnas.0611097104
Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.025502
Zhu, 2004, Atomistic study of dislocation loop emission from a crack tip, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.025503
Zunger, 1990, Special quasirandom structures, Phys. Rev. Lett., 65, 353, 10.1103/PhysRevLett.65.353