Atomistic interpretation of extra temperature and strain-rate sensitivity of heterogeneous dislocation nucleation in a multi-principal-element alloy

International Journal of Plasticity - Tập 149 - Trang 103155 - 2022
Shi-Cheng Dai1,2, Zhou-Can Xie1,2, Yun-Jiang Wang1,2
1State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
2School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China

Tài liệu tham khảo

Aubry, 2011, Energy barrier for homogeneous dislocation nucleation: comparing atomistic and continuum models, Scr. Mater., 64, 1043, 10.1016/j.scriptamat.2011.02.023 Brochard, 2010, Elastic limit for surface step dislocation nucleation in face-centered cubic metals: temperature and step height dependence, Acta Mater., 58, 4182, 10.1016/j.actamat.2010.04.009 Cai, 2016 Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257 Cao, 2020, Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment, Acta Mater., 194, 283, 10.1016/j.actamat.2020.05.042 Chen, 2020, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proc. Natl. Acad. Sci. U. S. A., 117, 16199, 10.1073/pnas.1919136117 Chen, 2019, Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method, Acta Mater., 168, 436, 10.1016/j.actamat.2019.02.035 Chen, 2020, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat. Commun., 11, 826, 10.1038/s41467-020-14641-1 Chen, 2021, Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592, 712, 10.1038/s41586-021-03428-z J.D. Cox, D.D. Wagman, and V.A. Medvedev, CODATA Key Values For Thermodynamics, Hemisphere Publishing Corp., New York, 1989. Cui, 2016, Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals, Acta Mater., 108, 128, 10.1016/j.actamat.2016.02.008 Dickey, 1969, Computer simulation of the lattice dynamics of solids, Phys. Rev., 188, 1407, 10.1103/PhysRev.188.1407 Ding, 2019, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574, 223, 10.1038/s41586-019-1617-1 Du, 2016, Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study, Phys. Rev. B, 94, 10.1103/PhysRevB.94.104110 Fultz, 2010, Vibrational thermodynamics of materials, Prog. Mater. Sci., 55, 247, 10.1016/j.pmatsci.2009.05.002 Gali, 2013, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39, 74, 10.1016/j.intermet.2013.03.018 Gao, 2016, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci., 82, 118, 10.1016/j.pmatsci.2016.05.002 George, 2020, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater., 188, 435, 10.1016/j.actamat.2019.12.015 George, 2019, High-entropy alloys, Nat. Rev. Mater., 4, 515, 10.1038/s41578-019-0121-4 Geslin, 2021, Journal of the mechanics and physics of solids microelasticity model of random alloys. part ii: displacement and stress correlations, J. Mech. Phys. Solids, 153 Geslin, 2021, Journal of the mechanics and physics of solids microelasticity model of random alloys. part i: mean square displacements and stresses, J. Mech. Phys. Solids, 153 Ghafarollahi, 2020, Theory of double-kink nucleation in dilute BCC alloys, Acta Mater., 196, 635, 10.1016/j.actamat.2020.07.008 Hong, 2017, Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy, Mater. Sci. Eng. A, 682, 569, 10.1016/j.msea.2016.11.078 Hong, 2021, Molecular dynamics study of the effect of moisture and porosity on thermal conductivity of tobermorite 14Å, Int. J. Therm. Sci., 159, 10.1016/j.ijthermalsci.2020.106537 Hua, 2021, Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation, Int. J. Plast., 142, 10.1016/j.ijplas.2021.102997 Kocks, 1975, Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19, 1 Kottke, 2020, Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100−xNix alloys, Acta Mater., 194, 236, 10.1016/j.actamat.2020.05.037 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Li, 2007, The mechanics and physics of defect nucleation, MRS Bull., 32, 151, 10.1557/mrs2007.48 Li, 2020, Unraveling the dislocation-precipitate interactions in high-entropy alloys, Int. J. Plast., 133, 10.1016/j.ijplas.2020.102819 Li, 2019, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10, 3563, 10.1038/s41467-019-11464-7 Li, 2018, Sample-size-dependent surface dislocation nucleation in nanoscale crystals, Acta Mater., 145, 19, 10.1016/j.actamat.2017.11.048 Li, 2021, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118, 10.1016/j.pmatsci.2021.100777 Li, 2010, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature, 464, 877, 10.1038/nature08929 Liu, 2020, Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys, J. Alloys Compd., 844, 10.1016/j.jallcom.2020.156162 Ma, 2020, Unusual dislocation behavior in high-entropy alloys, Scr. Mater., 181, 127, 10.1016/j.scriptamat.2020.02.021 Ma, 2019, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nat. Commun., 10, 5623, 10.1038/s41467-019-13311-1 Ming, 2019, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113, 255, 10.1016/j.ijplas.2018.10.005 Mishin, 2001, Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, 63, 10.1103/PhysRevB.63.224106 Moon, 2019, Strain-rate sensitivity of high-entropy alloys and its significance in deformation, Mater. Res. Lett., 7, 503, 10.1080/21663831.2019.1668489 S. Mridha, M. Sadeghilaridjani, S. Mukherjee, 2019. Activation volume and energy for dislocation nucleation in multi-principal element alloys. Metals (Basel). 9, 263. 10.3390/met9020263. Nguyen, 2012, Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.035501 Oh, 2009, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nat. Mater., 8, 95, 10.1038/nmat2370 Pan, 2020, Effects of defects on heat conduction of graphene/hexagonal boron nitride heterointerface, Phys. Lett. A, 384, 10.1016/j.physleta.2020.126774 Pei, 2020, Statistics of the NiCoCr medium-entropy alloy: novel aspects of an old puzzle, NPJ Comput. Mater., 6, 122, 10.1038/s41524-020-00389-1 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Rao, 2015, Screw dislocation cross slip at cross-slip plane jogs and screw dipole annihilation in FCC Cu and Ni investigated via atomistic simulations, Acta Mater., 101, 10, 10.1016/j.actamat.2015.08.070 Rodney, 2011, Modeling the mechanics of amorphous solids at different length scale and time scale, Model. Simul. Mater. Sci. Eng., 19, 83001, 10.1088/0965-0393/19/8/083001 Ryu, 2011, Entropic effect on the rate of dislocation nucleation, Proc. Natl. Acad. Sci. U. S. A., 108, 5174, 10.1073/pnas.1017171108 Ryu, 2011, Predicting the dislocation nucleation rate as a function of temperature and stress, J. Mater. Res., 26, 2335, 10.1557/jmr.2011.275 Shimizu, 2007, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans., 48, 2923, 10.2320/matertrans.MJ200769 Smith, 2017, Separating the configurational and vibrational entropy contributions in metallic glasses, Nat. Phys., 13, 900, 10.1038/nphys4142 Smith, 2020, The effect of local chemical ordering on frank-read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134, 10.1016/j.ijplas.2020.102850 Srivastava, 2021, The influence of nano/micro sample size on the strain-rate sensitivity of plastic flow in tungsten, Int. J. Plast., 136, 10.1016/j.ijplas.2020.102854 Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18, 15012, 10.1088/0965-0393/18/1/015012 Togo, 2015, First principles phonon calculations in materials science, Scr. Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021 Tsai, 2013, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater., 61, 4887, 10.1016/j.actamat.2013.04.058 Vaidya, 2018, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Mater., 146, 211, 10.1016/j.actamat.2017.12.052 Varvenne, 2016, Theory of strengthening in fcc high entropy alloys, Acta Mater., 118, 164, 10.1016/j.actamat.2016.07.040 Walsh, 2021, Magnetically driven short-range order can explain anomalous measurements in CrCoNi, Proc. Natl. Acad. Sci. U. S. A., 118, 1, 10.1073/pnas.2020540118 Wang, 2020, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science, 370, 95, 10.1126/science.aba3722 Wang, 2021, Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys, Phys. Rev. B, 103 Wang, 2015, Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals, Proc. Natl. Acad. Sci. U. S. A., 112, 13502, 10.1073/pnas.1518200112 Warner, 2007, Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals, Nat. Mater., 6, 876, 10.1038/nmat2030 Wu, 2014, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81, 428, 10.1016/j.actamat.2014.08.026 Wu, 2016, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Mater., 120, 108, 10.1016/j.actamat.2016.08.047 J. Xiao, N. Wu, O. Ojo, C. Deng, 2020. Dislocation nucleation in CoNiCrFeMn high entropy alloy. Materialia 12, 100749. 10.1016/j.mtla.2020.100749. Yang, 2010, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires, Nano Today, 5, 85, 10.1016/j.nantod.2010.02.002 Ye, 2016, High-entropy alloy: challenges and prospects, Mater. Today, 19, 349, 10.1016/j.mattod.2015.11.026 Ye, 2018, Atomic-scale distorted lattice in chemically disordered equimolar complex alloys, Acta Mater., 150, 182, 10.1016/j.actamat.2018.03.008 Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567 Yin, 2020, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nat. Commun., 11, 2507, 10.1038/s41467-020-16083-1 Yin, 2021, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order, Nat. Commun., 12, 4873, 10.1038/s41467-021-25134-0 Zhang, 2013, Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material, J. Mech. Phys. Solids, 61, 1670, 10.1016/j.jmps.2013.04.004 Zhang, 2016, Free-end adaptive nudged elastic band method for locating transition states in minimum energy path calculation, J. Chem. Phys., 145, 10.1063/1.4962019 Zhang, 2021, Chemical fluctuation enabling strength-plasticity synergy in metastable single-phase high entropy alloy film with gigapascal yield strength, Int. J. Plast., 139, 10.1016/j.ijplas.2021.102951 Zhang, 2021, Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars, Nano Lett., 21, 3671, 10.1021/acs.nanolett.1c00444 Zhang, 2020, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581, 283, 10.1038/s41586-020-2275-z Zhao, 2021, Anomalous dislocation core structure in shock compressed bcc high-entropy alloys, Acta Mater., 209, 10.1016/j.actamat.2021.116801 Zhu, 2010, Ultra-strength materials, Prog. Mater. Sci., 55, 710, 10.1016/j.pmatsci.2010.04.001 Zhu, 2009, Mechanics of ultra-strength materials, MRS Bull., 34, 167, 10.1557/mrs2009.47 Zhu, 2007, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals, Proc. Natl. Acad. Sci. U. S. A., 104, 3031, 10.1073/pnas.0611097104 Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.025502 Zhu, 2004, Atomistic study of dislocation loop emission from a crack tip, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.025503 Zunger, 1990, Special quasirandom structures, Phys. Rev. Lett., 65, 353, 10.1103/PhysRevLett.65.353