Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research

Arabian Journal for Science and Engineering - Tập 44 Số 1 - Trang 1-32 - 2019
I.B. Obot1, Kabiru Haruna2, Tawfik A. Saleh2
1Center of Research Excellence in Corrosion, Research Institute King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
2Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mogford, J.: Fatal accident investigation report, Texas City (2005)

Berlik, M.; Bernstein, A.; Chivian, E.; Epstein, P.; McCally, M. (eds.): Protecting Health, Preserving the Environment and Propelling the Economy: An Environmental Health Briefing Book. Physicians for Social Responsibility, Washington (2006)

Jacobson, G. (ed.): International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International, Houston (2016)

Elbelghiti, M.; Karzazi, Y.; Dafali, A.; Hammouti, B.; Bentiss, F.; Obot, I.B.; Bahadur, I.; Ebenso, E.E.: Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium. J. Mol. Liq. 218, 281–293 (2016). https://doi.org/10.1016/j.molliq.2016.01.076

Fu, J.; Zang, H.; Wang, Y.; Li, S.; Chen, T.; Liu, X.: Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res. 51, 6377–6386 (2012)

Amin, M.A.; Khaled, K.F.: Copper corrosion inhibition in O $$_2$$ 2 -saturated H $$_2$$ 2 SO $$_4$$ 4 solutions. Corros. Sci. 52, 1194–1204 (2010). https://doi.org/10.1016/j.corsci.2009.12.035

Khaled, K.F.: Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives. Electrochim. Acta 55, 5375–5383 (2010). https://doi.org/10.1016/j.electacta.2010.04.079

Khaled, K.F.: Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements. Mater. Chem. Phys. 125, 427–433 (2011). https://doi.org/10.1016/j.matchemphys.2010.037

Al-Mobarak, N.A.; Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.: Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions. Arab. J. Chem. 4, 185–193 (2011). https://doi.org/10.1016/j.arabjc.2010.06.036

Khaled, K.F.: Ambiguities about the copper corrosion inhibition in nitric acid solutions. Adv. Mater. Corros. 1, 85–87 (2012)

Zhang, X.; Odnevall Wallinder, I.; Leygraf, C.: Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corros. Sci. 85, 15–25 (2014). https://doi.org/10.1016/j.corsci.2014.03.028

Winkler, D.A.; Breedon, M.; Hughes, A.E.; Burden, F.R.; Barnard, A.S.; Harvey, T.G.; Cole, I.: Towards chromate-free corrosion inhibitors: structure–property models for organic alternatives. Green Chem. 16, 3349–3357 (2014). https://doi.org/10.1039/c3gc42540a

Zhang, K.; Xu, B.; Yang, W.; Yin, X.; Liu, Y.; Chen, Y.: Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 90, 284–295 (2015). https://doi.org/10.1016/j.corsci.2014.10.032

Qiang, Y.; Zhang, S.; Xu, S.; Guo, L.; Chen, N.; Obot, I.B.: Effective protection for copper corrosion by two thiazole derivatives in neutral chloride media: experimental and computational study. Int. J. Electrochem. Sci. 11, 3147–3163 (2016). https://doi.org/10.20964/110403147

Obot, I.B.; Ankah, N.K.; Sorour, A.; Gasem, Z.M.; Haruna, K.: 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain. Mater. Technol. 14, 1–10 (2017). https://doi.org/10.1016/j.susmat.2017.09.001

Khaled, K.F.: Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium. Electrochim. Acta 54, 4345–4352 (2009). https://doi.org/10.1016/j.electacta.2009.03.002

Kumar, S.; Vashisht, H.; Olasunkanmi, L.O.; Bahadur, I.; Verma, H.; Singh, G.; Obot, I.B.; Ebenso, E.E.: Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers. Sci. Rep. 6, 30937 (2016). https://doi.org/10.1038/srep30937

Khaled, K.F.; El-Maghraby, A.: Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions. Arab. J. Chem. 7, 319–326 (2014). https://doi.org/10.1016/j.arabjc.2010.11.005

Sherif, E.S.M.; Erasmus, R.M.; Comins, J.D.: Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor. Corros. Sci. 50, 3439–3445 (2008). https://doi.org/10.1016/j.corsci.2008.10.002

Khaled, K.F.; Amin, M.A.: Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0 M HNO $$_3$$ 3 . Corros. Sci. 51, 2098–2106 (2009). https://doi.org/10.1016/j.corsci.2009.05.038

Khaled, K.F.; Amin, Ma; Al-Mobarak, Na: On the corrosion inhibition and adsorption behaviour of some benzotriazole derivatives during copper corrosion in nitric acid solutions: a combined experimental and theoretical study. J. Appl. Electrochem. 40, 601–613 (2009). https://doi.org/10.1007/s10800-009-0035-8

Al-mobarak, N.A.; Khaled, K.F.; Elhabib, O.A.; Abdel-azim, K.M.: Electrochemical investigation of corrosion and corrosion inhibition of copper in NaCl solutions. J. Mater. Environ. Sci. 1, 9–19 (2010)

Amin, M.A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A.: A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros. Sci. 52, 1684–1695 (2010). https://doi.org/10.1016/j.corsci.2010.01.019

Taylor, C.D.: Modeling corrosion, atom by atom. Electrochem. Soc. Interface 23, 59–64 (2014)

Leach, A.R.: Molecular Modelling. Principles and Applications. Pearson Education, Harlow (2001)

Al-Mobarak, N.A.; Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Corrosion inhibition of copper in chloride media by 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: electrochemical and theoretical study. Arab. J. Chem. 3, 233–242 (2010). https://doi.org/10.1016/j.arabjc.2010.06.007

Liu, J.; Yu, W.; Zhang, J.; Hu, S.; You, L.; Qiao, G.: Molecular modeling study on inhibition performance of imidazolines for mild steel in CO $$_2$$ 2 corrosion. Appl. Surf. Sci. 256, 4729–4733 (2010). https://doi.org/10.1016/j.apsusc.2010.02.082

Khaled, K.F.: Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion. Mater. Chem. Phys. 124, 760–767 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.055

Khaled, K.F.: Molecular modeling and electrochemical investigations of the corrosion inhibition of nickel using some thiosemicarbazone derivatives. J. Appl. Electrochem. 41, 423–433 (2011). https://doi.org/10.1007/s10800-010-0252-1

Khaled, K.F.; Abdelshafi, N.S.; El-Maghraby, A.; Al-Mobarak, N.: Molecular level investigation of the interaction of cerium dioxide layer on steel substrate used in refrigerating systems. J. Mater. Environ. Sci. 2, 166–173 (2011). https://doi.org/10.4161/onci.23288

Khaled, K.F.; Abdel-Shafi, N.S.: Quantitative structure and activity relationship modeling study of corrosion inhibitors: genetic function approximation and molecular dynamics simulation. Int. J. Electrochem. Sci. 6, 4077–4094 (2011)

Khaled, K.F.: Adsorption of tryptophan on iron (111): a molecular dynamics study. J. Chem. Acta 1, 66–71 (2012)

Khaled, K.F.: Corrosion inhibition by L-arginine - Ce 4 + system : Monte Carlo simulation study. J. Chem. Acta. 1, 59–65 (2012)

Khaled, K.F.; Abdelshafi, N.S.; El-Maghraby, A.A.; Aouniti, A.; Al-Mobarak, N.; Hammouti, B.: Alanine as corrosion inhibitor for iron in acid medium: a molecular level study. Int. J. Electrochem. Sci. 7, 12706–12719 (2012)

Khaled, K.F.; Amin, M.A.: Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines. J. Appl. Electrochem. 38, 1609–1621 (2008). https://doi.org/10.1007/s10800-008-9604-5

Khaled, K.F.: Understanding corrosion inhibition of iron by 2-thiophenecarboxylic acid methyl ester : electrochemical and computational study. Adsorpt. J. Int. Adsorpt. Soc. 7, 1027–1044 (2012)

Obot, I.B.; Obi-Egbedi, N.O.; Ebenso, E.E.; Afolabi, A.S.; Oguzie, E.E.: Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo[5,4-f][1,10]phenanthroline on mild steel. Res. Chem. Intermed. 39, 1927–1948 (2013). https://doi.org/10.1007/s11164-012-0726-3

Umoren, S.A.; Obot, I.B.; Gasem, Z.M.: Adsorption and corrosion inhibition characteristics of strawberry fruit extract at steel/acids interfaces: experimental and theoretical approaches. Ionics (Kiel) 21, 1171–1186 (2015). https://doi.org/10.1007/s11581-014-1280-3

Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.B.; Quraishi, M.A.: Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J. Phys. Chem. C. 120, 3408–3419 (2016). https://doi.org/10.1021/acs.jpcc.5b11901

Guo, L.; Ye, G.; Obot, I.B.; Li, X.; Shen, X.; Shi, W.; Zheng, X.: Synergistic effect of potassium iodide with L-tryptophane on the corrosion inhibition of mild steel: a combined electrochemical and theoretical study. Int. J. Electrochem. Sci. 12, 166–177 (2017). https://doi.org/10.20964/2017.01.04

Abdelahi, M.M.M.; Elmsellem, H.; Benchidmi, M.; Sebbar, N.K.; Belghiti, M.A.; Ouasif, L.El; Jilalat, A.E.; Kadmi, Y.; Essassi, E.M.: A DFT and molecular dynamics study on inhibitory action of indazole derivative on corrosion of mild steel. J. Mater. Environ. Sci. 8, 1860–1876 (2017)

Sikine, M.; Elmsellem, H.; Rodi, Y.K.; Kadmi, Y.; Belghiti, M.; Steli, H.; Ouzidan, Y.; Sebbar, N.K.; Essassi, E.M.; Hammouti, B.: Experimental, Monte Carlo simulation and quantum chemical analysis of 1, 5-di (prop-2-ynyl) -benzodiazepine-2, 4-dione as new corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J. Mater. Environ. Sci. 8, 116–133 (2017)

Xia, S.; Qiu, M.; Yu, L.; Liu, F.; Zhao, H.: Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corros. Sci. 50, 2021–2029 (2008). https://doi.org/10.1016/j.corsci.2008.04.021

Khaled, K.F.: Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochim. Acta 53, 3484–3492 (2008). https://doi.org/10.1016/j.electacta.2007.12.030

Khaled, K.F.; Amin, M.A.: Electrochemical and molecular dynamics simulation studies on the corrosion inhibition of aluminum in molar hydrochloric acid using some imidazole derivatives. J. Appl. Electrochem. 39, 2553–2568 (2009). https://doi.org/10.1007/s10800-009-9951-x

Khaled, K.F.: Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors. J. Solid State Electrochem. 13, 1743–1756 (2009). https://doi.org/10.1007/s10008-009-0845-y

Khaled, K.F.; Amin, M.A.: Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives—molecular dynamics, chemical and electrochemical studies. Corros. Sci. 51, 1964–1975 (2009). https://doi.org/10.1016/j.corsci.2009.05.023

Khaled, K.F.; Fadl-Allah, S.A.; Hammouti, B.: Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium: experimental and quantum chemical molecular dynamics approach. Mater. Chem. Phys. 117, 148–155 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.043

Khaled, K.F.: Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H $$_2$$ 2 SO $$_4$$ 4 . Appl. Surf. Sci. 255, 1811–1818 (2008). https://doi.org/10.1016/j.apsusc.2008.06.030

Khaled, K.F.: Guanidine derivative as a new corrosion inhibitor for copper in 3% NaCl solution. Mater. Chem. Phys. 112, 104–111 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.052

Khaled, K.F.: Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid. Mater. Chem. Phys. 112, 290–300 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.056

Khaled, K.F.: Corrosion control of copper in nitric acid solutions using some amino acids—a combined experimental and theoretical study. Corros. Sci. 52, 3225–3234 (2010). https://doi.org/10.1016/j.corsci.2010.05.039

Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L.: Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline. Corros. Sci. 52, 2059–2065 (2010). https://doi.org/10.1016/j.corsci.2010.02.018

Khaled, K.F.: Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions. Appl. Surf. Sci. 256, 6753–6763 (2010). https://doi.org/10.1016/j.apsusc.2010.04.085

Khaled, K.F.: Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros. Sci. 52, 2905–2916 (2010). https://doi.org/10.1016/j.corsci.2010.05.001

Zhang, J.; Yu, W.; Yu, L.; Yan, Y.; Qiao, G.; Hu, S.; Ti, Y.: Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films. Corros. Sci. 53, 1331–1336 (2011). https://doi.org/10.1016/j.corsci.2010.12.027

Zhang, J.; Qiao, G.; Hu, S.; Yan, Y.; Ren, Z.; Yu, L.: Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros. Sci. 53, 147–152 (2011). https://doi.org/10.1016/j.corsci.2010.09.007

Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Inhibition of copper corrosion in 3.5% NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. J. Solid State Electrochem. 15, 663–673 (2011). https://doi.org/10.1007/s10008-010-1110-0

Khaled, K.F.: Experimental and computational investigations of corrosion and corrosion inhibition of iron in acid solutions. J. Appl. Electrochem. 41, 277–287 (2011). https://doi.org/10.1007/s10800-010-0235-2

Shi, W.Y.; Ding, C.; Yan, J.L.; Han, X.Y.; Lv, Z.M.; Lei, W.; Xia, M.Z.; Wang, F.Y.: Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces. Desalination 291, 8–14 (2012). https://doi.org/10.1016/j.desal.2012.01.019

Musa, A.Y.; Jalgham, R.T.T.; Mohamad, A.B.: Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1M HCl. Corros. Sci. 56, 176–183 (2012). https://doi.org/10.1016/j.corsci.2011.12.005

Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media. Int. J. Electrochem. Sci. 8, 10839–10850 (2013)

Obot, I.B.; Ebenso, E.E.; Kabanda, M.M.: Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. J. Environ. Chem. Eng. 1, 431–439 (2013). https://doi.org/10.1016/j.jece.2013.06.007

Shi, W.; Xia, M.; Lei, W.; Wang, F.: Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal. Desalination 322, 137–143 (2013). https://doi.org/10.1016/j.desal.2013.05.013

Khaled, K.F.; El-Sherik, A.M.: Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions. Int. J. Electrochem. Sci. 8, 10022–10043 (2013)

Guo L, Zhang ST, Li WP, Hu G, Li X (2013) Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media. Mater. Corros. https://doi.org/10.1002/maco.201307346

Yan, Y.; Wang, X.; Zhang, Y.; Wang, P.; Cao, X.; Zhang, J.: Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length. Corros. Sci. 73, 123–129 (2013). https://doi.org/10.1016/j.corsci.2013.03.031

Khaled, K.F.; Atta, A.A.; Abdel-Shafi, N.S.: A structure/function study of polyamidoamine dendrimer as a steel corrosion inhibitor. J. Mater. Environ. Sci. 5, 831–840 (2014)

Obot, I.B.; Gasem, Z.M.: Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros. Sci. 83, 359–366 (2014). https://doi.org/10.1016/j.corsci.2014.03.008

Hmamou, D.B.; Zarrouk, A.; Salghi, R.; Zarrok, H.; Ebenso, E.E.; Hammouti, B.; Kabanda, M.M.; Benchat, N.; Benali, O.: Experimental and theoretical studies of the adsorption and corrosion inhibition of 6-phenylpyridazine-3(2H)-thione on Carbon Steel in 2.0 M H $$<$$ < inf $$>$$ > 3 $$<$$ < /inf $$>$$ > PO $$<$$ < inf $$>$$ > 4 $$<$$ < /inf $$>$$ > solution. Int. J. Electrochem. Sci. 9, 120–138 (2014)

Guo, L.; Dong, W.; Zhang, S.: Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives. RSC Adv. 4, 41956–41967 (2014). https://doi.org/10.1039/C4RA04931D

Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W.: Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: theoretical studies. Corros. Sci. 83, 292–298 (2014). https://doi.org/10.1016/j.corsci.2014.02.025

Hmamou, D.Ben; Salghi, R.; Zarrouk, A.; Zarrok, H.; Touzani, R.; Hammouti, B.; El Assyry, A.: Investigation of corrosion inhibition of carbon steel in 0.5M H $$_2$$ 2 SO $$_4$$ 4 by new bipyrazole derivative using experimental and theoretical approaches. J. Environ. Chem. Eng. 3, 2031–2041 (2015). https://doi.org/10.1016/j.jece.2015.03.018

Wazzan, N.A.; Obot, I.B.; Kaya, S.: Theoretical modeling and molecular level insights into the corrosion inhibition activity of 2-amino-1,3,4-thiadiazole and its 5-alkyl derivatives. J. Mol. Liq. 221, 579–602 (2016). https://doi.org/10.1016/j.molliq.2016.06.011

Qiang, Y.; Guo, L.; Zhang, S.; Li, W.; Yu, S.; Tan, J.: Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci. Rep. 6, 33305 (2016). https://doi.org/10.1038/srep33305

Khaled, K.F.; El-Sherik, A.M.: Validation of a predictive model for corrosion inhibition of API 5L X60 steel in chloride solution. Int. J. Electrochem. Sci. 11, 2377–2391 (2016)

Verma, C.; Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.; Quraishi, M.A.: 5-Arylpyrimido-[4,5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Adv. 6, 15639–15654 (2016). https://doi.org/10.1039/c5ra27417f

Kaya, S.; Kaya, C.; Guo, L.; Kandemirli, F.; Tüzün, B.; Ugurlu, İ.; Madkour, L.H.; Saraçoğlu, M.: Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J. Mol. Liq. 219, 497–504 (2016). https://doi.org/10.1016/j.molliq.2016.03.042

Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B.: Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J. Taiwan Inst. Chem. Eng. 58, 528–535 (2016). https://doi.org/10.1016/j.jtice.2015.06.009

Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A.; Obot, I.B.: Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C. 120, 11598–11611 (2016). https://doi.org/10.1021/acs.jpcc.6b04429

Guo, L.; Kaya, S.; Obot, I.B.; Zheng, X.; Qiang, Y.: Toward understanding the anticorrosive mechanism of some thiourea derivatives for carbon steel corrosion: a combined DFT and molecular dynamics investigation. J. Colloid Interface Sci. 506, 478–485 (2017). https://doi.org/10.1016/j.jcis.2017.07.082

Mashuga, M.E.; Olasunkanmi, L.O.; Ebenso, E.E.: Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1 M HCl. J. Mol. Struct. 1136, 127–139 (2017). https://doi.org/10.1016/j.molstruc.2017.02.002

Qiang, Y.; Zhang, S.; Guo, L.; Xu, S.; Feng, L.; Obot, I.B.; Chen, S.: Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26% NH4Cl solution. J. Clean. Prod. 152, 17–25 (2017). https://doi.org/10.1016/j.jclepro.2017.03.104

Nwankwo, H.U.; Olasunkanmi, L.O.; Ebenso, E.E.: Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci. Rep. 7, 2436 (2017). https://doi.org/10.1038/s41598-017-02446-0

Guo, L.; Zhu, S.; Zhang, S.; He, Q.; Li, W.: Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 87, 366–375 (2014). https://doi.org/10.1016/j.corsci.2014.06.040

Sasikumar, Y.; Adekunle, A.S.; Olasunkanmi, L.O.; Bahadur, I.; Baskar, R.; Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 211, 105–118 (2015). https://doi.org/10.1016/j.molliq.2015.06.052

Singh, A.; Lin, Y.; Quraishi, M.A.; Olasunkanmi, L.O.; Fayemi, O.E.; Sasikumar, Y.; Ramaganthan, B.; Bahadur, I.; Obot, I.B.; Adekunle, A.S.; Kabanda, M.M.; Ebenso, E.E.: Porphyrins as corrosion inhibitors for N80 steel in 3.5% NaCl solution: electrochemical, quantum chemical, QSAR and Monte Carlo simulations studies. Molecules 20, 15122–15146 (2015). https://doi.org/10.3390/molecules200815122

Ramaganthan, B.; Gopiraman, M.; Olasunkanmi, L.O.; Kabanda, M.M.; Yesudass, S.; Bahadur, I.; Adekunle, A.S.; Obot, I.B.; Ebenso, E.E.: Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies. RSC Adv. 5, 76675–76688 (2015). https://doi.org/10.1039/c5ra12097g

Olasunkanmi, L.; Obot, I.B.; Kabanda, M.M.; Ebenso, E.E.: Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J. Phys. Chem. C. 119, 16004–16019 (2015). https://doi.org/10.1021/acs.jpcc.5b03285

Yesudass, S.; Olasunkanmi, L.O.; Bahadur, I.; Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J. Taiwan Inst. Chem. Eng. 64, 252–268 (2016). https://doi.org/10.1016/j.jtice.2016.04.006

Obot, I.B.; Kaya, S.; Kaya, C.; Tüzün, B.: Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res. Chem. Intermed. 42, 4963–4983 (2016). https://doi.org/10.1007/s11164-015-2339-0

Belghiti, M.E.; Karzazi, Y.; Dafali, A.; Obot, I.B.; Ebenso, E.E.; Emran, K.M.; Bahadur, I.; Hammouti, B.; Bentiss, F.: Anti-corrosive properties of 4-amino-3,5-bis(disubstituted)-1,2,4-triazole derivatives on mild steel corrosion in 2 M H $$_3$$ 3 PO $$_4$$ 4 solution: experimental and theoretical studies. J. Mol. Liq. 216, 874–886 (2016). https://doi.org/10.1016/j.molliq.2015.12.093

Obot, I.B.; Kaya, S.; Kaya, C.; Tuzun, B.: Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Phys. E Low Dimens. Syst. Nanostruct. 80, 82–90 (2016). https://doi.org/10.1016/j.physe.2016.01.024

Awad, M.K.; Mustafa, M.R.; Abouelnga, M.M.: Quantum chemical studies and atomistic simulations of some inhibitors for the corrosion of al surface. Prot. Met. Phys. Chem. Surfaces 52, 156–168 (2016). https://doi.org/10.1134/S2070205116010032

Karzazi, Y.; Belghiti, M.E.; El-Hajjaji, F.; Boudra, S.; Hammouti, B.: Density functional theory modeling and Monte Carlo simulation assessment of inhibition performance of two quinoxaline derivatives for steel corrosion. J. Mater. Environ. Sci. 7, 4011–4023 (2016)

Krim, O.; Jodeh, S.; Messali, M.; Hammouti, B.; Elidrissi, A.; Khaled, K.; Salghig, R.; Lgazg, H.A.: Synthesis, characterization and corrosion protection properties of imidazole derivatives on mild steel in 1. 0 M HCl. Port. Electrochim. Acta 34, 213–229 (2016). https://doi.org/10.4152/pea.201603213

Khaled, K.F.; Abdel-Shafi, N.S.; Al-Mubarak, N.A.; Alonazi, M.S.: L-arginine as corrosion and scale inhibitor of steel in synthetic reservoir water. Int. J. Electrochem. Sci. 11, 2433–2446 (2016)

Haque, J.; Ansari, K.R.; Srivastava, V.; Quraishi, M.A.; Obot, I.B.: Pyrimidine derivatives as novel acidizing corrosion inhibitors for N80 steel useful for petroleum industry: a combined experimental and theoretical approach. J. Ind. Eng. Chem. 49, 176–188 (2017). https://doi.org/10.1016/j.jiec.2017.01.025

Tourabi, M.; Sahibed-dine, A.; Zarrouk, A.; Obot, I.B.; Hammouti, B.; Bentiss, F.; Nahlé, A.: 3,5-Diaryl-4-amino-1,2,4-triazole derivatives as effective corrosion inhibitors for mild steel in hydrochloric acid solution: correlation between anti-corrosion activity and chemical structure. Prot. Met. Phys. Chem. Surfaces 53, 548–559 (2017). https://doi.org/10.1134/S2070205117030236

Cuendet, M.: Molecular Dynamics Simulation. European Molecular Biological Laboratory, pp. 1–67 (2008)

Dorsett, H., White, A.: Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials. Department of Defense, Weapons Systems Division, Aeronautical and Maritime Research Laboratory, DSTO-GD-0253, Salisbury, South Australia (2000)

Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926). https://doi.org/10.1103/PhysRev.28.1049

Levine, I.N.: Quantum Chemistry. Prentice Hall, Upper Saddle River (2000)

Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math. Proc. Camb. Philos. Soc. 24, 89–110 (1928)

Fock, V.: A method for solving the quantum mechanical multi-body problem. Z. Phys. 61, 126–148 (1930). https://doi.org/10.1007/BF01340294

Adamo, C.; Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999). https://doi.org/10.1063/1.478522

Al-saadi, A.A.H.: Spectroscopic and ab initio studies on the conformations and vibrational spectra of selected cyclic and bicyclic molecules spectroscopic and ab initio studies on the conformations and vibrational spectra of selected cyclic and bicyclic molecules (2006)

Møller, C.; Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934). https://doi.org/10.1103/PhysRev.46.618

Hohenberg, P.; Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

Withnall, R.; Chowdhry, B.Z.; Bell, S.; Dines, T.J.: Computational chemistry using modern electronic structure methods. Chem. Educ. 84, 1364 (2007). https://doi.org/10.1021/ed084p1364

Levine, I.N.: Quantum Chemistry. Pearson, New York (2000)

Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

Burke, K.; Perdew, J.P.; Wang, Y.: Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson J.F.; Vignale G.; Das M.P. (eds.) Electronic Density Functional Theory, pp. 81–111. Springer US, Boston, MA (1998)

Perdew, J.P.; Burke, K.; Wang, Y.: Erratum: generalized gradient approximation for the exchange-correlation hole of a many-electron system [Phys. Rev. B 54, 16 533 (1996)]. Phys. Rev. B. 57, 14999–14999 (1998). https://doi.org/10.1103/PhysRevB.57.14999

Perdew, J.; Chevary, J.; Vosko, S.; Jackson, K.; Pederson, M.; Singh, D.; Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992)

Foresman, J.B.: Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems By David Young (Cytoclonal Pharmaceutics Inc.). Wiley, New York. 2001. xxvi + 382 pp. \$69.95. ISBN: 0-471-33368-9 (2001)

John, Sam; Kuruvilla, Mathew; J., A.: Adsorption and inhibition effect of methyl carbamate on copper metal in 1N HNO $$_3$$ 3 : an experimental and theoretical study. RSC Adv. 3, 8929–8938 (2013). https://doi.org/10.1039/c4ra02436b

Verma, C.; Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.; Quraishi, M.A.: 2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies. RSC Adv. 6, 53933–53948 (2016). https://doi.org/10.1039/C6RA04900A

Verma, C.; Quraishi, M.A.; Ebenso, E.E.; Obot, I.B.; El Assyry, A.: 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: experimental and theoretical studies. J. Mol. Liq. 219, 647–660 (2016). https://doi.org/10.1016/j.molliq.2016.04.024

Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.: Adsorption and corrosion inhibition properties of N-n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenylmethanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv. 6, 86782–86797 (2016). https://doi.org/10.1039/C6RA11373G

Collett, C.T.; Robson, C.D.: Handbook of Computational Chemistry Research. Oxford University Press, Oxford (2010)

Cook, D.B.: Handbook of Computational [Quantum] Chemistry, vol. xxiii. Oxford Sci. Publ., Oxford (1998). https://doi.org/10.1021/ci0003449

Herman, M.F.: The development of semiclassical dynamical methods and their application to vibrational relaxation in condensed-phase systems. Int. J. Quantum Chem. 70, 897–907 (1998). https://doi.org/10.1002/(SICI)1097-461X(1998)70:4/5 $$<$$ < 897::AID-QUA35 $$>$$ > 3.0.CO;2-W

De Paz, J.-L.G.; Ciller, J.: On the use of AMl and PM3 methods on energetic compounds. Propellants Explos. Pyrotech. 18, 33–40 (1993). https://doi.org/10.1002/prep.19930180107

Akutsu, Y.; Tahara, S.-Y.; Tamura, M.; Yoshida, T.: Calculations of heats of formation for nitro compounds by semi-empirical mo methods and molecular mechanics. J. Energ. Mater. 9, 161–171 (1991). https://doi.org/10.1080/07370659108019862

Coleman, W.F.; Arumainayagam, C.R.: HyperChem 5 (by Hypercube, Inc.). J. Chem. Educ. 75, 416 (1998). https://doi.org/10.1021/ed075p416

Štich, I.: Correlations in the motion of atoms in liquid silicon. Phys. Rev. A. 44, 1401–1404 (1991). https://doi.org/10.1103/PhysRevA.44.1401

McCammon, J.A.; Gelin, B.R.; Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)

Stillinger, F.H.; Rahman, A.: Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545–1557 (1974)

Alder, B.J.; Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957). https://doi.org/10.1063/1.1743957

Ojeda, P.; Garcia, M.E.; Londoño, A.; Chen, N.-Y.: Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate states. Biophys. J. 96, 1076–1082 (2009). https://doi.org/10.1529/biophysj.107.125369

Milik, M.; Skolnick, J.: Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins Struct. Funct. Genet. 15, 10–25 (1993)

Sadus, R.J.: Ensembles and Monte Carlo Simulation. Centre for molecular simulation swinburne university of technology, Hawthorn Victoria 3122, Australia

Theodorou, D.N.: Diffusion in Polymers. Marcel Dekker, New York (1996)

Alder, B.J.; Wainwright, T.E.: Studies in molecular dynamics. I. Gen. Method. J. Chem. Phys. 31, 459–466 (1959). https://doi.org/10.1063/1.1730376

Rai, B. (ed.): Molecular Modeling for the Design of Novel Performance Chemicals and Materials. CRC Press, Taylor & Francis Group, New York (2012)

Peters, G.H.J.: Computer simulations: a tool for investigating the function of complex biological macromolecules. In: Svendsen, A. (ed.) Enzyme Functionality-Design, Engineering, and Screening (2004)

Carson, M.; Hermans, J.: The Molecular dynamics workshop laboratory. In: Hermans, J. (ed.) Molecular Dynamics and Protein Structure, University of North Carolina, Chapel Hill (1985)

Maiti, J.-R.; Lalitha, H.; Amitesh, S.: Molecular Modeling Techniques in Material Sciences. Taylor & Francis, Milton Park (2005)

Allen, M.: Introduction to molecular dynamics simulation. Comput. Soft Matter Synth. Polym. Proteins 23, 1–28 (2004). https://doi.org/10.1016/j.cplett.2006.06.020

Taylor, C.D.; Marcus, P. (eds.): Molecular Modeling of Corrosion Processes. Wiley, Hoboken (2015)

Metropolis N.; Ulam S. : The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949). https://doi.org/10.1080/01621459.1949.10483310

Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

Frenkel, D.; Smit, B.: Understanding molecular simulation. Academic Press, San Diego, California (2002)

Allen, M.P.; Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1991)

Jensen, B.: Investigation into the impact of solid surfaces in aqueous system (2016)

Sun, H.; Ren, P.; Fried, J.R.: The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229–246 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7

Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

Casewit, C.J.; Colwell, K.S.; Rappe, A.K.: Application of a universal force field to main group compounds. J. Am. Chem. Soc. 114, 10046–10053 (1992). https://doi.org/10.1021/ja00051a042

Lifson, S.; Hagler, A.T.; Dauber, P.: Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot.cntdot.cntdot.H- hydrogen bonds. J. Am. Chem. Soc. 101, 5111–5121 (1979). https://doi.org/10.1021/ja00512a001

Hagler, A.T.; Lifson, S.: Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 96, 5327–5335 (1974). https://doi.org/10.1021/ja00824a005

Hagler, A.T.; Huler, E.; Lifson, S.: Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96, 5319–5327 (1974). https://doi.org/10.1021/ja00824a004

Bulatov, V.; Vasily,; Cei, W.: Computer Simulations of Dislocations. Oxford University Press, Oxford (2006)

Zhigilei, L.: Introduction to atomistic simulations. MSE 4270/6270, University of Virginia (2007)

Obot, I.B.; Umoren, S.A.; Gasem, Z.M.; Suleiman, R.; Ali, B.El: Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1M HCl. J. Ind. Eng. Chem. 21, 1328–1339 (2015). https://doi.org/10.1016/j.jiec.2014.05.049

Verma, C.B.; Ebenso, E.E.; Bahadur, I.; Obot, I.B.; Quraishi, M.A.: 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: experimental and theoretical investigation. J. Mol. Liq. 212, 209–218 (2015). https://doi.org/10.1016/j.molliq.2015.09.009

Olasunkanmi, L.O.; Obot, I.B.; Kabanda, M.M.; Ebenso, E.E.: Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J. Phys. Chem. C 119, 16004–16019 (2015). https://doi.org/10.1021/acs.jpcc.5b03285

Kaya, S.; Guo, L.; Kaya, C.; Tüzün, B.; Obot, I.B.; Touir, R.; Islam, N.: Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J. Taiwan Inst. Chem. Eng. 65, 522–529 (2016). https://doi.org/10.1016/j.jtice.2016.05.034

Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C.: Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 406, 301–306 (2017). https://doi.org/10.1016/j.apsusc.2017.02.134

Molecular simulation/periodic boundary conditions—Wikibooks, open books for an open world. https://en.wikibooks.org/wiki/Molecular_Simulation/Periodic_Boundary_Conditions . Accessed 08 Oct 2017

Arslan, T.; Kandemirli, F.; Ebenso, E.E.; Love, I.; Alemu, H.: Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 51, 35–47 (2009). https://doi.org/10.1016/j.corsci.2008.10.016

Chauhan, L.R.; Gunasekaran, G.: Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros. Sci. 49, 1143–1161 (2007). https://doi.org/10.1016/j.corsci.2006.08.012

API: Damage Mechanisms Affecting fixed Equipment in the Refining Industry RP 571, vol. 372. Am. Pet. Inst., Washington (2011)

Ebenso, E.E.; Kabanda, M.M.; Murulana, L.C.; Singh, A.K.; Shukla, S.K.: Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution. Ind. Eng. Chem. Res. 51, 12940–12958 (2012). https://doi.org/10.1021/ie300965k

Wang, X.; Liu, L.; Wang, P.; Li, W.; Zhang, J.; Yan, Y.: How the inhibition performance is affected by inhibitor concentration: a perspective from microscopic adsorption behavior. Ind. Eng. Chem. Res. 53, 16785–16792 (2014). https://doi.org/10.1021/ie502790c

Luo, X.; Zhang, S.; Guo, L.: Investigation of a pharmaceutically active compound omeprazole as inhibitor for corrosion of mild steel in H $$_2$$ 2 SO $$_4$$ 4 solution. Int. J. Electrochem. Sci. 9, 7309–7324 (2014)

Khaled, K.F.; Al-Nofai, N.M.; Abdel-Shafi, N.S.: QSAR of corrosion inhibitors by genetic function approximation, neural network and molecular dynamics simulation methods. J. Mater. Environ. Sci. 7, 2121–2136 (2016)

Saha, S.K.; Dutta, A.ut; Ghosh, P.; Sukul, D.; Banerjee, P.: Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 M HCL medium: a combined experimental and theoretical approach. Phys. Chem. Chem. Phys 17, 5679–5690 (2015). https://doi.org/10.1039/c4cp05614k

Saha, S.K.; Banerjee, P.: A theoretical approach to understand the inhibition mechanism of steel corrosion with two aminobenzonitrile inhibitors. RSC Adv. 5, 71120–71130 (2015). https://doi.org/10.1039/c5ra15173b

Messali, M.; Larouj, M.; Lgaz, H.; Rezki, N.; Al-Blewi, F.F.; Aouad, M.R.; Chaouiki, A.; Salghi, R.; Chung, I.M.: A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: experimental and computer simulations studies. J. Mol. Struct. 1168, 39–48 (2018). https://doi.org/10.1016/j.molstruc.2018.05.018

Saha, S.K.; Murmu, M.; Murmu, N.C.; Banerjee, P.: Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: a combined DFT and MD simulation study. J. Mol. Liq. 224, 629–638 (2016). https://doi.org/10.1016/j.molliq.2016.09.110

El-Hajjaji, F.; Messali, M.; Aljuhani, A.; Aouad, M.R.; Hammouti, B.; Belghiti, M.E.; Chauhan, D.S.; Quraishi, M.A.: Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies. J. Mol. Liq. 249, 997–1008 (2018). https://doi.org/10.1016/j.molliq.2017.11.111

Saha, S.K.; Banerjee, P.: Introduction of newly synthesized Schiff base molecules as efficient corrosion inhibitors for mild steel in 1 M HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Mater. Chem. Front. 2, 1674–1691 (2018). https://doi.org/10.1039/C8QM00162F

Antonijevic, M.M.; Petrovic, M.B.: Copper corrosion inhibitors. A review. Int. J. Electrochem. Sci. 3, 1–28 (2008)

Zhou, Y.; Xu, S.; Guo, L.; Zhang, S.; Lu, H.; Gong, Y.; Gao, F.: Evaluating two new synthesized Schiff bases on the corrosion of copper in NaCl solutions. RSC Adv. 10, 2072–2087 (2015). https://doi.org/10.1039/C4RA14449J

Lv, T.M.; Zhu, S.H.; Guo, L.; Zhang, S.T.: Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution. Res. Chem. Intermed. 41, 7073–7093 (2014). https://doi.org/10.1007/s11164-014-1799-y

Tan, J.; Guo, L.; Lv, T.; Zhang, S.: Experimental and computational evaluation of 3-indolebutyric acid as a corrosion inhibitor for mild steel in sulfuric acid solution. Int. J. Electrochem. Sci. 10, 823–837 (2015)

Qiang, Y.; Guo, L.; Zhang, S.; Li, W.; Yu, S.; Tan, J.: Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci. Rep. 6, 1–14 (2016). https://doi.org/10.1038/srep33305

Kumar, C.B.P.; Mohana, K.N.: Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. J. Taiwan Inst. Chem. Eng. 45, 1031–1042 (2014). https://doi.org/10.1016/j.jtice.2013.08.017

Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Inhibition of copper corrosion in 3.5 % NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. J. Solid State Electrochem. 15, 663–673 (2011). https://doi.org/10.1007/s10008-010-1110-0

Guo, L.; Ren, X.; Zhou, Y.; Xu, S.; Gong, Y.: Monte Carlo simulations of corrosion inhibition of copper by two Schiff bases. In: International Conference on Materials, Environmental and Biological Engineering (MEBE 2015), pp. 622–625 (2015)

Oliveira, A.F.; Seifert, G.; Heine, T.; Duarte, H.A.: Density-functional based tight-binding: an approximate DFT method. J. Braz. Chem. Soc. 20, 1193–1205 (2009). https://doi.org/10.1590/S0103-50532009000700002

Han, P.; He, Y.; Chen, C.; Yu, H.; Liu, F.; Yang, H.; Ma, Y.; Zheng, Y.: Study on synergistic mechanism of inhibitor mixture based on electron transfer behavior. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep33252

Aradi, B.; Hourahine, B.; Frauenheim, T.: DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007). https://doi.org/10.1021/jp070186p

Guido, C.A.; Jacquemin, D.; Adamo, C.; Mennucci, B.: On the TD-DFT accuracy in determining single and double bonds in excited-state structures of organic molecules. J. Phys. Chem. A. 114, 13402–13410 (2010). https://doi.org/10.1021/jp109218z

Guo, L.; Qi, C.; Zheng, X.; Zhang, R.; Shen, X.; Kaya, S.: Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method. RSC Adv. 7, 29042–29050 (2017). https://doi.org/10.1039/c7ra04120a

Guo, L.; Wu, M.; Kaya, S.; Chen, M.; Madkour, L.H.: Influence of the alkyl chain length of alkyltriazoles on the corrosion inhibition of iron: a DFTB study. In: AIP Conference Proceedings (2018)