Atomic-resolution structure imaging of defects and interfaces in compound semiconductors

Progress in Crystal Growth and Characterization of Materials - Tập 66 Số 4 - Trang 100498 - 2020
David J. Smith1
1Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, 2008, A proposal for monolithographically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors, 1

Haider, 1998, Electron microscopy image enhanced, Nature, 392, 768, 10.1038/33823

Krivanek, 1999, Towards sub-Å electron beams, Ulltramicroscopy, 78, 1, 10.1016/S0304-3991(99)00013-3

Smith, 2008, Development of aberration-corrected electron microscopy, Microsc. Microanal., 14, 2, 10.1017/S1431927608080124

Smith, 2013, Exploring aberration-corrected electron microscopy for compound semiconductors, Microscopy, 62, S65, 10.1093/jmicro/dft011

Egerton, 2018, Characterization of single-atom catalysts by EELS and EDX spectroscopy, Ultramicroscopy, 193, 111, 10.1016/j.ultramic.2018.06.013

Wang, 2006, Understanding ion-milling damage in Hg1-xCdxTe epilayers, J. Vac. Sci. Technol. A, 24, 995, 10.1116/1.2207148

Cullis, 1985, Formation and elimination of surface ion milling defects in cadmium telluride, zinc sulphide and zinc selenide, Ultramicroscopy, 17, 203, 10.1016/0304-3991(85)90087-7

Giannuzzi, 2005

Cullen, 2008, Assessment of surface damage and sidewall implantation in AlGaN-based high electron mobility transistor devices caused during focused-ion-beam milling, J. Appl. Phys., 104, 10.1063/1.3006626

Jia, 2010, On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM, Ultramicroscopy, 110, 500, 10.1016/j.ultramic.2009.10.006

Aoki, 2016, Bright-field imaging of compound semiconductors using aberration-corrected scanning transmission electron microscopy, Semicond. Sci. Technol., 31, 10.1088/0268-1242/31/9/094002

Findlay, 2009, Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Appl. Phys. Lett., 95, 10.1063/1.3265946

de la Mata, 2012, Polarity assignment in ZnTe, GaAs, ZnO and GaN-AlN nanowires, Nano Lett, 12, 2579, 10.1021/nl300840q

Li, 2013, From atomic structure to photovoltaic properties in CdTe solar cells, Ultramicroscopy, 134, 113, 10.1016/j.ultramic.2013.06.010

Gangopadhyay, 2018, Atomic structure of dissociated 60° dislocations in GaAs/GaAs0.92Sb0.08/GaAs heterostructures, Scripta Mater., 153, 77, 10.1016/j.scriptamat.2018.04.050

Orchowski, 1995, Electron holography surmounts resolution limit of electron microscopy, Phys. Rev. Lett., 74, 399, 10.1103/PhysRevLett.74.399

Ichinose, 1999, Atomic resolution HVEM and environmental noise, J. Electron Microsc., 48, 887, 10.1093/oxfordjournals.jmicro.a023761

Phillipp, 1996, Atomic resolution with a megavolt electron microscope, Adv. Solid State Phys., 35, 257, 10.1007/BFb0107550

Dasilva, 2017, Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy, Ultramicroscopy, 176, 11, 10.1016/j.ultramic.2016.09.015

Xu, 2005, Distortion and segregation in a dislocation core region at atomic resolution, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.145501

Tillmann, 2004, Spherical aberration in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs, Microsc. Microanal., 10, 185, 10.1017/S1431927604040395

Tillmann, 2006, Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline materials at atomic resolution, J. Mater. Sci., 41, 4420, 10.1007/s10853-006-0154-0

Li, 2013, Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles, Sci. Rep., 3, 3229, 10.1038/srep03229

Luna, 2019, Impact of Bi incorporation on the evolution of microstructure during growth of low-temperature GaAs:Bi/Ga(As,Bi) layers, J. Appl. Phys., 126, 10.1063/1.5111532

Jenny, 1954, Semiconducting cadmium telluride, Phys. Rev., 96, 1190, 10.1103/PhysRev.96.1190

Li, 2013, Carrier separation at dislocation pairs in CdTe, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.096403

Li, 2016, Column-by-column observation of dislocation motion in CdTe: dynamic scanning transmission electron microscopy, Appl. Phys. Lett., 109

Paulauskas, 2014, Atomic scale study of polar Lomer-Cottrell and Hirth dislocation cores in CdTe, Acta Cryst. A, 70, 524, 10.1107/S2053273314019639

Sun, 2016, Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface, Sci. Rep., 6, 27009, 10.1038/srep27009

Xin, 2000, Direct experimental observations of the electronic structure at threading dislocations in metalorganic vapor phase epitaxy grown wurtzite GaN thin films, Appl. Phys. Lett., 76, 466, 10.1063/1.125789

Arslan, 2005, Atomic and electronic structure of mixed and partial dislocations in GaN, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.025504

Rhode, 2013, Mg doping affects dislocation core structure in GaN, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.025502

Rhode, 2015, Dislocation core structures in Si-doped GaN, Appl. Phys. Lett., 107, 10.1063/1.4937457

Morkoç, 1999

Rhode, 2016, Dislocation core structure in (0001) GaN, J. Appl. Phys., 119, 10.1063/1.4942847

Massabuau, 2017, Dislocations in AlGaN: core structures, atom segregation, and optical properties, Nano Lett, 17, 4846, 10.1021/acs.nanolett.7b01697

Matthews, 1974, Defects in epitaxial multilayers, J. Cryst. Growth, 27, 118

Hornstra, 1957, Dislocations in the diamond lattice, J. Phys. Chem. Solids, 5, 129, 10.1016/0022-3697(58)90138-0

Wang, 2013, Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface, ACS Appl. Mater. Interfaces, 5, 9760, 10.1021/am4028907

Fernández-Delgado, 2016, Atomic-column scanning transmission electron microscopy analysis of misfit dislocations in GaSb/GaAs quantum dots, J. Mater. Sci., 51, 7691, 10.1007/s10853-016-0051-0

Gangopadhyay, 2019, Strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs heterostructures, Acta Mater., 162, 103, 10.1016/j.actamat.2018.09.042

Ouyang, 2012, Structural properties of InAs/InAs1-xSbx type-II superlattices grown by molecular beam epitaxy, J. Vac. Sci. Technol. B, 30, 02B106, 10.1116/1.3672026

Lu, 2016, Evaluation of antimony segregation in InAs/InAs1-xSbx type-II superlattices grown by molecular beam epitaxy, J. Appl. Phys., 119, 10.1063/1.4942844

Zhou, 2013, Measurement and effects of polarization fields on one-monolayer-thick InN/GaN multiple quantum wells, Phys. Rev. B, 88, 10.1103/PhysRevB.88.125310

Kim, 2013, Atomic resolution mapping of interfacial intermixing and segregation in InAs/GaSb superlattices: a correlative study, J. Appl. Phys., 113, 10.1063/1.4794193

Bonef, 2016, Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements, J. Microsc., 262, 178, 10.1111/jmi.12340

Nicolai, 2015, Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers, J. Appl. Phys., 118, 10.1063/1.4926786

Liu, 2016, Transforming common III-V and II-VI semiconductor compounds into topological heterostructures: the case of CdTe/InSb superlattices, Adv. Funct. Mater., 26, 3259, 10.1002/adfm.201505357

McGibbon, 1995, Direct sublattice imaging of semiconductor materials, J. Vac. Sci. Technol. B, 13, 1751, 10.1116/1.587807

McGibbon, 1995, Direct observation of dislocation core structures in CdTe/GaAs(001), Science, 269, 519, 10.1126/science.269.5223.519

Lu, 2016, Towards defect-free epitaxial CdTe and MgCdTe layers grown on InSb (001) substrates, J. Cryst. Growth, 439, 99, 10.1016/j.jcrysgro.2016.01.015

Luna, 2019, Strategies for analyzing noncommon-atom heterovalent interfaces: the case of CdTe-on-InSb, Adv. Mater. Interfaces

Fan, 2011, Growth and material properties of ZnTe on GaAs, InP, InAs and GaSb (001) substrates for electronic and optoelectronic device applications, J. Cryst. Growth, 323, 127, 10.1016/j.jcrysgro.2010.11.164

Ouyang, 2011, Microstructural characterization of thick ZnTe epilayers grown on GaSb, InAs, InP and GaAs substrates, J. Cryst. Growth, 330, 30, 10.1016/j.jcrysgro.2011.06.054

Poppitz, 2015, An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE, Micron, 73, 1, 10.1016/j.micron.2015.03.006

Lassise, 2019, Molecular beam epitaxial growth and structural properties of hetero-crystalline and heterovalent PbTe/CdTe/InSb structures, J. Appl. Phys., 126, 10.1063/1.5097276

Zhang, 2015, Quantum oscillations in a two-dimensional; electron gas at the rocksalt/zincblende interface of PbTe/CdTe(111) heterostructures, Nano Lett., 15, 4381, 10.1021/acs.nanolett.5b01605

Zhang, 2018, Investigation of defect creation in GaP/Si(001) epitaxial structures, J. Cryst. Growth, 503, 36, 10.1016/j.jcrysgro.2018.09.020

Li, 2017, Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics, Prog. Cryst. Growth Char. Mater., 63, 105, 10.1016/j.pcrysgrow.2017.10.001

Beyer, 2013, Atomic structure of (110) anti-phase boundaries in GaP on Si(001), Appl. Phys. Lett., 103, 10.1063/1.4815985

Beyer, 2016, Pyramidal structure formation at the interface between III/V semiconductors and silicon, Chem. Mater., 28, 3265, 10.1021/acs.chemmater.5b04896

Lopatin, 2002, Z-contrast imaging of dislocation cores at the GaAs/Si interface, Appl. Lett. Phys., 81, 2728, 10.1063/1.1511808

Li, 2018, Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon, J. Appl. Phys., 123, 10.1063/1.5011161

Hosseini-Vajargah, 2012, Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy, J. Appl. Phys., 112, 10.1063/1.4759160

Radtke, 2010, Scanning transmission electron microscopy investigation of the Si(111)/AlN interface grown by metalorganic vapor phase epitaxy, Appl. Phys. Lett., 97, 10.1063/1.3527928

Radtke, 2012, Structure and chemistry of the Si(111)/AlN interface, Appl. Phys. Lett., 100, 10.1063/1.3674984

Zhang, 2013, Interfacial structure and chemistry of GaN on Ge(111), Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.256101

Lu, 2007, Nanoelectronics from the bottom up, Nature Mater., 6, 841, 10.1038/nmat2028

den Hertog, 2010, Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors, Nano Lett., 12, 5691, 10.1021/nl302890f

de la Mata, 2014, Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures, Nano Lett., 14, 6614, 10.1021/nl503273j

Sanchez, 2018, Stable defects in semiconductor nanowires, Nano Lett., 18, 3081, 10.1021/acs.nanolett.8b00620

Li, 2014, Determination of polarization-fields across polytype interfaces in InAs nanopillars, Adv. Mater., 26, 1052, 10.1002/adma.201304021

Namazi, 2018, Realization of wurtzite GaSb using InAs nanowire templates, Adv. Funct. Mater., 28

Zeng, 2018, Correlation between electrical transport and nanoscale strain in InAs/In0.6Ga0.4As core-shell nanowires, Nano Lett., 18, 4949, 10.1021/acs.nanolett.8b01782

Chaparro, 1999, Strain-driven alloying in Ge/Si(100) coherent islands, Phys. Rev. Lett., 83, 1199, 10.1103/PhysRevLett.83.1199

Floyd, 2003, Nanometer-scale composition measurement of Ge/Si(100) islands, Appl. Phys. Lett., 82, 1473, 10.1063/1.1558215

Luna, 2012, Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.126101

B. McKeon, X. Liu, J. Furdyna, D.J. Smith, Atomic-resolution structure imaging of misfit dislocations at heterovalent II-VI/III-V interfaces, Phys. Rev. Mater.submitted.

Luna, 2010, Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy, Appl. Phys. Lett., 96, 10.1063/1.3291666

Mahalingam, 2008, Compositional analysis of mixed-cation-anion III-V semiconductor interfaces using phase retrieval high-resolution transmission electron microscopy, J. Microsc., 230, 172, 10.1111/j.1365-2818.2008.01995.x

Vallet, 2016, Highly strained AlAs-type interfaces in InAs/AlSb heterostructures, Appl. Phys. Lett., 108, 10.1063/1.4952951

Bonef, 2015, Atomic arrangement at ZnTe/CdSe interface determined by high resolution scanning transmission electron microscopy and atom probe tomography, Appl. Phys. Lett., 106, 10.1063/1.4907648

Han, 2015, Quantitative characterization of the interface roughness of (GaIn)As quantum wells by high resolution STEM, Micron, 79, 1, 10.1016/j.micron.2015.07.003

Han, 2017, Quantitative atomic resolution at interfaces: subtraction of the background in STEM images with the example of (GaIn)P/GaAs structures, J. Appl. Phys., 121, 10.1063/1.4973587

Bourret, 1983, Are the core structures of dislocations and grain boundaries resolvable by HREM?, J. Microsc., 129, 337, 10.1111/j.1365-2818.1983.tb04190.x

Krivanek, 2019, Progress in ultrahigh energy resolution EELS, Ultramicroscopy, 203, 60, 10.1016/j.ultramic.2018.12.006