Atomic insights into single-layer and bilayer germanene on Al(111) surface
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Katsnelson, 2006, Chiral tunneling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384
Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849
Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925
Tse, 2011, Quantum anomalous Hall effect in single-layer and bilayer graphene, Phys. Rev. B, 83, 155447, 10.1103/PhysRevB.83.155447
Ni, 2012, Tunable bandgap in silicene and germanene, Nano Lett., 12, 113, 10.1021/nl203065e
Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804
Takeda, 1994, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B, 50, 14916, 10.1103/PhysRevB.50.14916
Acun, 2015, Germanene: the germanium analogue of graphene, J. Phys. Condens. Matter, 27, 443002, 10.1088/0953-8984/27/44/443002
Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.076802
Yao, 2007, Spin-orbit gap of graphene: first-principles calculations, Phys. Rev. B, 75, 10.1103/PhysRevB.75.041401
Ye, 2014, Tunable band gap in germanene by surface adsorption, Physica E, 59, 60, 10.1016/j.physe.2013.12.016
Ye, 2014, Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations, RSC Adv., 4, 21216, 10.1039/C4RA01802H
Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16
Li, 2014, Buckled germanene formation on Pt(111), Adv. Mater., 26, 4820, 10.1002/adma.201400909
Qin, 2017, Direct evidence of Dirac signature in bilayer germanene islands on Cu(111), Adv. Mater., 29, 1606046, 10.1002/adma.201606046
Li, 2017, Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111), Phys. Chem. Chem. Phys., 19, 22844, 10.1039/C7CP03597G
Yuhara, 2018, Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111), ACS Nano, 12, 11632, 10.1021/acsnano.8b07006
Lin, 2018, Single-layer dual germanene phases on Ag(111), Phys. Rev. Materials, 2, 10.1103/PhysRevMaterials.2.024003
Derivaz, 2015, Continuous germanene layer on Al(111), Nano Lett., 15, 2510, 10.1021/acs.nanolett.5b00085
Gou, 2016, Strained monolayer germanene with 1×1 lattice on Sb(111), 2D Mater., 3, 10.1088/2053-1583/3/4/045005
Zhang, 2016, Structural and electronic properties of germanene on MoS2, Phys. Rev. Lett., 116, 256804, 10.1103/PhysRevLett.116.256804
Yao, 2019, Charge puddles in germanene, Appl. Phys. Lett., 114, 10.1063/1.5085304
Bampoulis, 2014, Germanene termination of Ge2Pt crystals on Ge(110), J. Phys. Condens. Matter, 26, 442001, 10.1088/0953-8984/26/44/442001
Dávila, 2016, Few layer epitaxial germanene: a novel two-dimensional Dirac material, Sci. Rep., 6, 20714, 10.1038/srep20714
Muzychenko, 2017, The surface structures growth's features caused by Ge adsorption on the Au(111) surface, JETP Lett. (Engl. Transl.), 106, 217, 10.1134/S0021364017160111
Wang, 2017, Investigation of the atomic and electronic structures of highly ordered two-dimensional germanium on Au(111), Phys. Rev. Materials, 1, 10.1103/PhysRevMaterials.1.074002
Cantero, 2017, Growth of germanium on Au(111): formation of germanene or intermixing of Au and Ge atoms?, Phys. Chem. Chem. Phys., 19, 18580, 10.1039/C7CP02949G
Stephan, 2016, Germanene on Al(111): interface electronic states and charge transfer, J. Phys. Chem. C, 120, 1580, 10.1021/acs.jpcc.5b10307
Fukaya, 2016, Asymmetric structure of germanene on an Al(111) surface studied by total-reflection high-energy positron diffraction, 2D Mater., 3, 10.1088/2053-1583/3/3/035019
Stephan, 2017, Tip-induced switch of germanene atomic structure, J. Phys. Chem. Lett., 8, 4587, 10.1021/acs.jpclett.7b02137
Wang, 2017, Coexistence of strongly buckled germanene phases on Al(111), Beilstein J. Nanotechnol., 8, 1946, 10.3762/bjnano.8.195
Endo, 2018, √3×√3 germanene on Al(111) grown at nearly room temperature, APEX, 11
Fang, 2018, Germanene growth on Al(111): a case study of interface effect, J. Phys. Chem. C, 122, 18669, 10.1021/acs.jpcc.8b03534
Martínez, 2019, Growth of germanene on Al(111) hindered by surface alloy formation, J. Phys. Chem. C, 123, 12910, 10.1021/acs.jpcc.9b02614
Muzychenko, 2019, Single and multi domain buckled germanene phases on Al(111) surface, Nano Res, 12, 2988, 10.1007/s12274-019-2542-1
Oughaddou, 2000, Ge/Ag(111) semiconductor-on-metal growth: formation of an Ag2Ge surface alloy, Phys. Rev. B, 62, 16653, 10.1103/PhysRevB.62.16653
Liu, 2017, Role of atomic interaction in electronic hybridization in two-dimensional Ag2Ge nanosheets, J. Phys. Chem. C, 121, 16754, 10.1021/acs.jpcc.7b02017
Chen, 1990, Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule, Phys. Rev. B, 42, 884, 10.1103/PhysRevB.42.8841
Chen, 1992, Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanations of corrugation reversal, Phys. Rev. Lett., 69, 1656, 10.1103/PhysRevLett.69.1656
Tersoff, 1983, Theory and application for the scanning tunneling microscope, Phys. Rev. Lett., 50, 1998, 10.1103/PhysRevLett.50.1998
Tersoff, 1985, Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805, 10.1103/PhysRevB.31.805
Jelínek, 2008, Tip-induced reduction of the resonant tunneling current on semiconductor surfaces, Phys. Rev. Lett., 101, 176101, 10.1103/PhysRevLett.101.176101
Ternes, 2011, Interplay of conductance, force, and structural change in metallic point contacts, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.016802
Wright, 2013, Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy, J. Phys. D Appl. Phys., 46, 155307, 10.1088/0022-3727/46/15/155307
Hapala, 2014, Mechanism of high-resolution STM/AFM imaging with functionalized tips, Phys. Rev. B, 90, 10.1103/PhysRevB.90.085421
Hapala, 2016, Mapping the electrostatic force field of single molecules from high-resolution scanning probe images, Nat. Commun., 7, 11560, 10.1038/ncomms11560
Krejčí, 2017, Principles and simulations of high-resolution STM imaging with a flexible tip apex, Phys. Rev. B, 95, 10.1103/PhysRevB.95.045407
Martínez, 2012, Improvement of scanning tunneling microscopy resolution with H-sensitized tips, Phys. Rev. Lett., 108, 246102, 10.1103/PhysRevLett.108.246102
Martínez, 2019, Ge films on Au(111) and Al(111): thermal stability, Mater. Today: SAVE Proc., 14, 148, 10.1016/j.matpr.2019.05.073
Horcas, 2007, WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 10.1063/1.2432410
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Perdew, 1986, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation, Phys. Rev. B, 33, 8800, 10.1103/PhysRevB.33.8800
Soler, 2002, The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302
Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Muzychenko, 2012, Noninvasive embedding of single Co atoms in Ge(111)2×1 surfaces, Phys. Rev. B, 85, 125412, 10.1103/PhysRevB.85.125412
Muzychenko, 2013, Electronic and atomic structure of Co/Ge nanoislands on the Ge(111) surface, Phys. Rev. B, 88
Rohlfing, 2007, Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111), Phys. Rev. B, 76, 115421, 10.1103/PhysRevB.76.115421