Atomic insights into single-layer and bilayer germanene on Al(111) surface

Materials Today Physics - Tập 14 - Trang 100241 - 2020
D.A. Muzychenko1, A.I. Oreshkin1, A.D. Legen'ka2, C. Van Haesendonck3
1Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
2Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, 142190, Troitsk, Russia
3Quantum Solid State Physics, KU Leuven, BE-3001, Leuven, Belgium

Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Katsnelson, 2006, Chiral tunneling and the Klein paradox in graphene, Nat. Phys., 2, 620, 10.1038/nphys384 Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925 Tse, 2011, Quantum anomalous Hall effect in single-layer and bilayer graphene, Phys. Rev. B, 83, 155447, 10.1103/PhysRevB.83.155447 Ni, 2012, Tunable bandgap in silicene and germanene, Nano Lett., 12, 113, 10.1021/nl203065e Cahangirov, 2009, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804 Takeda, 1994, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B, 50, 14916, 10.1103/PhysRevB.50.14916 Acun, 2015, Germanene: the germanium analogue of graphene, J. Phys. Condens. Matter, 27, 443002, 10.1088/0953-8984/27/44/443002 Liu, 2011, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.076802 Yao, 2007, Spin-orbit gap of graphene: first-principles calculations, Phys. Rev. B, 75, 10.1103/PhysRevB.75.041401 Ye, 2014, Tunable band gap in germanene by surface adsorption, Physica E, 59, 60, 10.1016/j.physe.2013.12.016 Ye, 2014, Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations, RSC Adv., 4, 21216, 10.1039/C4RA01802H Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16 Li, 2014, Buckled germanene formation on Pt(111), Adv. Mater., 26, 4820, 10.1002/adma.201400909 Qin, 2017, Direct evidence of Dirac signature in bilayer germanene islands on Cu(111), Adv. Mater., 29, 1606046, 10.1002/adma.201606046 Li, 2017, Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111), Phys. Chem. Chem. Phys., 19, 22844, 10.1039/C7CP03597G Yuhara, 2018, Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111), ACS Nano, 12, 11632, 10.1021/acsnano.8b07006 Lin, 2018, Single-layer dual germanene phases on Ag(111), Phys. Rev. Materials, 2, 10.1103/PhysRevMaterials.2.024003 Derivaz, 2015, Continuous germanene layer on Al(111), Nano Lett., 15, 2510, 10.1021/acs.nanolett.5b00085 Gou, 2016, Strained monolayer germanene with 1×1 lattice on Sb(111), 2D Mater., 3, 10.1088/2053-1583/3/4/045005 Zhang, 2016, Structural and electronic properties of germanene on MoS2, Phys. Rev. Lett., 116, 256804, 10.1103/PhysRevLett.116.256804 Yao, 2019, Charge puddles in germanene, Appl. Phys. Lett., 114, 10.1063/1.5085304 Bampoulis, 2014, Germanene termination of Ge2Pt crystals on Ge(110), J. Phys. Condens. Matter, 26, 442001, 10.1088/0953-8984/26/44/442001 Dávila, 2016, Few layer epitaxial germanene: a novel two-dimensional Dirac material, Sci. Rep., 6, 20714, 10.1038/srep20714 Muzychenko, 2017, The surface structures growth's features caused by Ge adsorption on the Au(111) surface, JETP Lett. (Engl. Transl.), 106, 217, 10.1134/S0021364017160111 Wang, 2017, Investigation of the atomic and electronic structures of highly ordered two-dimensional germanium on Au(111), Phys. Rev. Materials, 1, 10.1103/PhysRevMaterials.1.074002 Cantero, 2017, Growth of germanium on Au(111): formation of germanene or intermixing of Au and Ge atoms?, Phys. Chem. Chem. Phys., 19, 18580, 10.1039/C7CP02949G Stephan, 2016, Germanene on Al(111): interface electronic states and charge transfer, J. Phys. Chem. C, 120, 1580, 10.1021/acs.jpcc.5b10307 Fukaya, 2016, Asymmetric structure of germanene on an Al(111) surface studied by total-reflection high-energy positron diffraction, 2D Mater., 3, 10.1088/2053-1583/3/3/035019 Stephan, 2017, Tip-induced switch of germanene atomic structure, J. Phys. Chem. Lett., 8, 4587, 10.1021/acs.jpclett.7b02137 Wang, 2017, Coexistence of strongly buckled germanene phases on Al(111), Beilstein J. Nanotechnol., 8, 1946, 10.3762/bjnano.8.195 Endo, 2018, √3×√3 germanene on Al(111) grown at nearly room temperature, APEX, 11 Fang, 2018, Germanene growth on Al(111): a case study of interface effect, J. Phys. Chem. C, 122, 18669, 10.1021/acs.jpcc.8b03534 Martínez, 2019, Growth of germanene on Al(111) hindered by surface alloy formation, J. Phys. Chem. C, 123, 12910, 10.1021/acs.jpcc.9b02614 Muzychenko, 2019, Single and multi domain buckled germanene phases on Al(111) surface, Nano Res, 12, 2988, 10.1007/s12274-019-2542-1 Oughaddou, 2000, Ge/Ag(111) semiconductor-on-metal growth: formation of an Ag2Ge surface alloy, Phys. Rev. B, 62, 16653, 10.1103/PhysRevB.62.16653 Liu, 2017, Role of atomic interaction in electronic hybridization in two-dimensional Ag2Ge nanosheets, J. Phys. Chem. C, 121, 16754, 10.1021/acs.jpcc.7b02017 Chen, 1990, Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule, Phys. Rev. B, 42, 884, 10.1103/PhysRevB.42.8841 Chen, 1992, Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanations of corrugation reversal, Phys. Rev. Lett., 69, 1656, 10.1103/PhysRevLett.69.1656 Tersoff, 1983, Theory and application for the scanning tunneling microscope, Phys. Rev. Lett., 50, 1998, 10.1103/PhysRevLett.50.1998 Tersoff, 1985, Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805, 10.1103/PhysRevB.31.805 Jelínek, 2008, Tip-induced reduction of the resonant tunneling current on semiconductor surfaces, Phys. Rev. Lett., 101, 176101, 10.1103/PhysRevLett.101.176101 Ternes, 2011, Interplay of conductance, force, and structural change in metallic point contacts, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.016802 Wright, 2013, Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy, J. Phys. D Appl. Phys., 46, 155307, 10.1088/0022-3727/46/15/155307 Hapala, 2014, Mechanism of high-resolution STM/AFM imaging with functionalized tips, Phys. Rev. B, 90, 10.1103/PhysRevB.90.085421 Hapala, 2016, Mapping the electrostatic force field of single molecules from high-resolution scanning probe images, Nat. Commun., 7, 11560, 10.1038/ncomms11560 Krejčí, 2017, Principles and simulations of high-resolution STM imaging with a flexible tip apex, Phys. Rev. B, 95, 10.1103/PhysRevB.95.045407 Martínez, 2012, Improvement of scanning tunneling microscopy resolution with H-sensitized tips, Phys. Rev. Lett., 108, 246102, 10.1103/PhysRevLett.108.246102 Martínez, 2019, Ge films on Au(111) and Al(111): thermal stability, Mater. Today: SAVE Proc., 14, 148, 10.1016/j.matpr.2019.05.073 Horcas, 2007, WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 10.1063/1.2432410 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Perdew, 1986, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation, Phys. Rev. B, 33, 8800, 10.1103/PhysRevB.33.8800 Soler, 2002, The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302 Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Muzychenko, 2012, Noninvasive embedding of single Co atoms in Ge(111)2×1 surfaces, Phys. Rev. B, 85, 125412, 10.1103/PhysRevB.85.125412 Muzychenko, 2013, Electronic and atomic structure of Co/Ge nanoislands on the Ge(111) surface, Phys. Rev. B, 88 Rohlfing, 2007, Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111), Phys. Rev. B, 76, 115421, 10.1103/PhysRevB.76.115421