Atomic clock transitions in silicon-based spin qubits

Nature Nanotechnology - Tập 8 Số 8 - Trang 561-564 - 2013
Gary Wolfowicz1, Alexei M. Tyryshkin2, Richard E. George1, H. Riemann3, Nikolai V. Abrosimov3, Peter Becker4, Hans-Joachim Pohl5, M. L. W. Thewalt6, S. A. Lyon2, John J. L. Morton7
1London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
2Department of Electrical Engineering, Princeton University, Princeton, 08544, New Jersey, USA
3Institute for Crystal Growth, Max-Born Strasse 2, Berlin, D-12489, Germany
4Physikalisch-Technische Bundesanstalt, Braunschweig D-38116, Germany
5Vitcon Projectconsult GmbH, Jena, 07745, Germany
6Department of Physics, Simon Fraser University, Burnaby British Columbia, V5A 1S6 Canada
7Department of Electronic & Electrical Engineering, University College London, WC1E 7JE, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs. Nature Phys. 7, 109–113 (2011).

Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012).

Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

Bollinger, J., Prestage, J., Itano, W. & Wineland, D. Laser-cooled-atomic frequency standard. Phys. Rev. Lett. 54, 1000–1003 (1985).

Fisk, P. T. H. et al. Very high Q microwave spectroscopy on trapped 171Yb+ ions: application as a frequency standard. IEEE Trans. Instrum. Meas. 44, 113–116 (1995).

George, R. E. et al. Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. Phys. Rev. Lett. 105, 067601 (2010).

Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater. 9, 725–729 (2010).

Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

Haljan, P. et al. Entanglement of trapped-ion clock states. Phys. Rev. A 72, 062316 (2005).

Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

Schenkel, T. et al. Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Appl. Phys. Lett. 88, 112101 (2006).

Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

Longdell, J., Alexander, A. & Sellars, M. Characterization of the hyperfine interaction in europium-doped yttrium orthosilicate and europium chloride hexahydrate. Phys. Rev. B 74, 195101 (2006).

McAuslan, D., Bartholomew, J., Sellars, M. & Longdell, J. Reducing decoherence in optical and spin transitions in rare-earth-metal-ion-doped materials. Phys. Rev. A 85, 032339 (2012).

Wolfowicz, G. et al. Decoherence mechanisms of 209Bi donor electron spins in isotopically pure 28Si. Phys. Rev. B 86, 245301 (2012).

Mohammady, M. H., Morley, G. W., Nazir, A. & Monteiro, T. S. Analysis of quantum coherence in bismuth-doped silicon: a system of strongly coupled spin qubits. Phys. Rev. B 85, 094404 (2012).

Morley, G. W. et al. Quantum control of hybrid nuclear–electronic qubits. Nature Mater. 12, 103–107 (2013).

Schuster, D. et al. High-cooperativity coupling of electron–spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

Kubo, Y. et al. Storage and retrieval of a microwave field in a spin ensemble. Phys. Rev. A 85, 012333 (2012).

Riemann, H., Abrosimov, N. & Noetzel, N. Doping of silicon crystals with Bi and other volatile elements by the pedestal growth technique. ECS Trans. 3, 53–59 (2006).

Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

Salikhov, K., Dzuba, S. & Raitsimring, A. The theory of electron spin-echo signal decay resulting from dipole–dipole interactions between paramagnetic centers in solids. J. Magn. Reson. 42, 255276 (1981).

Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance Ch. 8.1.5, 216 (Oxford Univ. Press, 2001).

Balian, S. J. et al. Measuring central-spin interaction with a spin-bath by pulsed ENDOR: towards suppression of spin diffusion decoherence. Phys. Rev. B 86, 104428 (2012).

Witzel, W., Carroll, M., Morello, A., Cywinski, L. & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).

Fraval, E., Sellars, M. & Longdell, J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005).