Atomic Interlamellar Ion Path in High Sulfur Content Lithium‐Montmorillonite Host Enables High‐Rate and Stable Lithium–Sulfur Battery

Advanced Materials - Tập 30 Số 40 - 2018
Wei Chen1, Tianyu Lei1, Weiqiang Lv1, Yin Hu1, Yichao Yan1, Yu Jiao2, Weidong He1, Zhenghan Li1, Chenglin Yan3,4, Jie Xiong1
1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
2School of Applied and Chemical Engineering Xichang College Xichang 615053 China
3Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
4Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006 China

Tóm tắt

AbstractFast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high‐rate cathode for lithium–sulfur (Li–S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high‐rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading‐independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g−1 at 1 mA cm−2 and a retention of 345 mAh g−1 at a high discharging/charging rate of 15 mA cm−2, with a sulfur loading up to 4 mg. This strategy represents a major advance in high‐rate Li–S batteries via the construction of fast ions transfer paths toward real‐life applications, and contributes to the research community for the fundamental mechanism study of loading‐independent electrode systems.

Từ khóa


Tài liệu tham khảo

10.1039/C5CS00410A

10.1038/nenergy.2016.132

10.1038/s41586-018-0109-z

10.1002/adma.201605160

10.1002/adma.201506014

10.1038/nenergy.2016.114

10.1002/adma.201700007

10.1126/science.aap8787

10.1021/acs.nanolett.7b02332

10.1021/acsnano.6b05696

10.1002/adma.201702829

10.1021/acsnano.5b06373

10.1021/acsenergylett.7b00230

10.1002/adma.200800854

10.1002/aenm.201700260

10.1039/C5EE01809A

10.1002/ange.201700686

10.1002/anie.201410174

10.1002/aenm.201702889

10.1021/nl403130h

10.1002/aenm.201601843

10.1021/acs.nanolett.5b00367

10.1006/jcis.1999.6330

10.1021/j100083a017

10.1038/187967a0

10.1021/acscentsci.7b00569

10.1016/S0927-7757(03)00056-6

10.1103/PhysRevB.82.125416

Zhou G., 2017, Proc. Natl. Acad. Sci. USA, 114, 5

10.1038/ncomms11203

10.1002/adma.201603401

10.1149/2.0181501jes

10.1039/c2ee22294a

10.1002/aenm.201602347

10.1021/acs.nanolett.8b01882

10.1039/C5EE03902A

10.1002/anie.201411109

10.1002/aenm.201502459

10.1002/aenm.201500408