Phân tích tomography bằng đầu dò nguyên tử về sự phân bố hydro trong hợp kim Ti6Al4V được gia công bằng tia laser để kiểm soát sự giòn do hydro

G. Ranjith Kumar1, Anirudh Muralidharan1, G. Rajyalakshmi1, S. Swaroop2
1School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
2School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

Tóm tắt

Sự giòn do hydro của hợp kim Ti6Al4V đã được nghiên cứu dưới điều kiện nạp hydro catot hóa điện hóa. Các phương pháp xử lý bề mặt tiên tiến và đặc trưng vật liệu, như là gia công sốc bằng laser (LSP) hoặc gia công bằng laser (LP), phân tích đầu dò nguyên tử, thử nghiệm kéo với tốc độ biến dạng chậm (SSRT) và phân tích ứng suất dư bằng XRD đã được áp dụng để phân tích. Kết quả thu được cho thấy cơ hội thực hiện xử lý bề mặt để kiểm soát sự giòn do hydro. Việc làm nhỏ hạt và ứng suất dư nén được tạo ra đã hạn chế sự hấp thụ hydro trong hợp kim Ti6Al4V. Hơn nữa, kết quả APT đã cung cấp tỷ lệ phần trăm khối lượng của TiH (hydrua titan) trong các mẫu đã được gia công bằng laser và mẫu chưa được xử lý nhưng đã nạp hydro. Do đó, chúng tôi kết luận rằng ứng suất nén được sinh ra từ quy trình gia công bằng laser đã kiểm soát sự hấp thụ hydro của hợp kim Ti6Al4V.

Từ khóa

#Hydro #hợp kim Ti6Al4V #giòn do hydro #gia công bằng laser #phân tích đầu dò nguyên tử

Tài liệu tham khảo

Kulekci MK, Esme U (2014) Critical analysis of processes and apparatus for industrial surface peening technologies. Int J Adv Manuf Technol 74:1551–1565. https://doi.org/10.1007/s00170-014-6088-9 Galindo-Nava EI, Basha BIY, Rivera-Díaz-del-Castillo PEJ (2017) Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing. J Mater Sci Technol 33:1433–1447. https://doi.org/10.1016/j.jmst.2017.09.011 Fan YH, Zhang B, Wang JQ, Han EH, Ke W (2019) Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel. J Mater Sci Technol 35:2213–2219. https://doi.org/10.1016/j.jmst.2019.03.043 Amado CM, Minahk CJ, Cilli E, et al (2020) Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test. BBA - Biomembr In Press:1–25. https://doi.org/10.1016/j.bbamem.2019.183135 Li X, Zhang J, Akiyama E, Fu Q, Li Q (2019) Hydrogen embrittlement behavior of Inconel 718 alloy at room temperature. J Mater Sci Technol 35:499–502. https://doi.org/10.1016/j.jmst.2018.10.002 Yang L, He L, Huang D, Wang Y, Song Q, Zhao L, Shen X, Tian Z, Wang H (2020) Three-dimensional hydrogen distribution and quantitative determination of titanium alloys via neutron tomography. R Soc Chemisrty 145:4156–4163. https://doi.org/10.1039/d0an00416b Gao GY, Dexter SC (1991) Effect of hydrogen on creep behavior of Ti-6AI-4V alloy at room temperature. Metall Trans A 18:1125–1130. https://doi.org/10.1007/BF03325723 Lee SC, Ho WY, Huang CC, Meletis EI, Liu Y (1996) Hydrogen embrittlement and fracture toughness of a titanium alloy with surface modification by hard coatings. J Mater Eng Perform 5:64–70. https://doi.org/10.1007/BF02647271 Grabovetskaya GP, Mishin IP, Zabudchenko OV et al (2018) Effect of hydrogen on the formation of structure and mechanical properties of the ultrafine-grained titanium alloy of Ti-Al-V-Mo system. AIP Conf Proc 2051:1–6. https://doi.org/10.1063/1.5083344 Takasawa K, Ikeda R, Ishikawa N, Ishigaki R (2012) Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels. Int J Hydrog Energy 37:2669–2675. https://doi.org/10.1016/j.ijhydene.2011.10.099 Niwa M, Shikama T, Yonezu A (2015) Mechanism of hydrogen embrittlement cracking produced by residual stress from indentation impression. Mater Sci Eng A 624:52–61. https://doi.org/10.1016/j.msea.2014.11.008 Zhecheva A, Sha W, Malinov S, Long A (2005) Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf Coat Technol 200:2192–2207. https://doi.org/10.1016/j.surfcoat.2004.07.115 Ma CL, Takasugi T, Hanada S (1996) Suppression of environmental embrittlement of Ni3(Si,Ti) alloys by shot peening. Scr Mater 34:1131–1138 Mahagaonkar SB, Brahmankar PK, Seemikeri CY (2009) Some investigations into development of nozzle and suction system for air blast shot peening machine. Int J Adv Manuf Technol 44:306–317. https://doi.org/10.1007/s00170-008-1831-8 Takakuwa O, Soyama H (2012) Suppression of hydrogen-assisted fatigue crack growth in austenitic stainless steel by cavitation peening. Int J Hydrog Energy 37:5268–5276. https://doi.org/10.1016/j.ijhydene.2011.12.035 Chin KS, Idapalapati S, Ardi DT (2020) Thermal stress relaxation in shot peened and laser peened nickel-based superalloy. J Mater Sci Technol 59:100–106. https://doi.org/10.1016/j.jmst.2020.03.059 San Marchi C, Zaleski T, Lee S, Yang NYC, Stuart B (2008) Effect of laser peening on the hydrogen compatibility of corrosion-resistant nickel alloy. Scr Mater 58:782–785. https://doi.org/10.1016/j.scriptamat.2007.12.023 Hackel (2010) Laser Peening for reducing Hydrogen Embrittlement. Patent 2 Smith PR, Shepard MJ, Prevey PS, AC (1999) Effect of power density and pulse repetition on laser shock peening of Ti-6AI-4V. J Mater Eng Perform 9:33–37 Wang Y, Xie H, Zhou Z, Li X, Wu W, Gong J (2020) Effect of shot peening coverage on hydrogen embrittlement of a ferrite-pearlite steel. Int J Hydrog Energy 45:7169–7184. https://doi.org/10.1016/j.ijhydene.2020.01.021 Montross CS, Wei T, Ye L et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036. https://doi.org/10.1016/S0142-1123(02)00022-1 Clauer AH, Holbrook JH, Fairand BP (1981) Effects of laser induced shock waves on metals. Proc Soc Photo-Optical Instrum Eng 675–702. https://doi.org/10.1007/978-1-4613-3219-0_38 Sokol D, Clauer A (2006) Applications of laser peening to titanium alloys. Photonic Appl:1–4 Agyenim-Boateng E, Huang S, Sheng J, Yuan G, Wang Z, Zhou J, Feng A (2017) Influence of laser peening on the hydrogen embrittlement resistance of 316L stainless steel. Surf Coat Technol 328:44–53. https://doi.org/10.1016/j.surfcoat.2017.08.037 Huang S, Agyenim-Boateng E, Sheng J, Yuan G, Dai FZ, Ma DH, Zhao JX, Zhou JZ (2019) Effects of laser peening with different laser power densities on the mechanical properties of hydrogenated TC4 titanium alloy. Int J Hydrog Energy 44:17114–17126. https://doi.org/10.1016/j.ijhydene.2019.05.002 Zhang XC, Zhang YK, Lu JZ, Xuan FZ, Wang ZD, Tu ST (2010) Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening. Mater Sci Eng A 527:3411–3415. https://doi.org/10.1016/j.msea.2010.01.076 Park JS, Nam TH, Kim JS, Kim JG (2013) Effect of electrotransport treatment on susceptibility of high-strength low alloy steel to hydrogen embrittlement. Int J Hydrog Energy 38:12509–12515. https://doi.org/10.1016/j.ijhydene.2013.07.040 Lu Y, Sun GF, Wang ZD, Su BY, Zhang YK, Ni ZH (2020) The effects of laser peening on laser additive manufactured 316L steel. Int J Adv Manuf Technol 107:2239–2249. https://doi.org/10.1007/s00170-020-05167-3 Hou J, Chen W, Chen Z, Zhang K, Huang A (2020) Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel. J Mater Sci Technol 48:63–71. https://doi.org/10.1016/j.jmst.2020.01.011 Ebrahimi M, Amini S, Mahdavi SM (2017) The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel. Int J Adv Manuf Technol 88:1557–1565. https://doi.org/10.1007/s00170-016-8873-0 Huang S, Yuan G, Sheng J, Tan W, Agyenim-Boateng E, Zhou J, Guo H (2018) Strengthening mechanism and hydrogen-induced crack resistance of AISI 316L stainless steel subjected to laser peening at different power densities. Int J Hydrog Energy 43:11263–11274. https://doi.org/10.1016/j.ijhydene.2018.05.037 Zhang T, Li L, Lu S, Gong H (2018) Simulation of prestressed ultrasonic peen forming on bending deformation and residual stress distribution. Int J Adv Manuf Technol 98:385–393. https://doi.org/10.1007/s00170-018-2287-0 Ding H, Pence C, Ding H, Shen N (2013) Experimental analysis of sheet metal micro-bending using a nanosecond-pulsed laser. Int J Adv Manuf Technol 69:319–327. https://doi.org/10.1007/s00170-013-5032-8 Kamkarrad H, Narayanswamy S, Tao XS (2014) Feasibility study of high-repetition rate laser shock peening of biodegradable magnesium alloys. Int J Adv Manuf Technol 74:1237–1245. https://doi.org/10.1007/s00170-014-6051-9 Gujba AK, Medraj M (2014) Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening Ranjith Kumar G, Rajyalakshmi G (2020) FE Simulation for stress distribution and surface deformation in Ti-6Al-4 V induced by interaction of multi scale laser shock peening parameters. Optik (Stuttg) 206:164280. https://doi.org/10.1016/j.ijleo.2020.164280 Yokoyama K, Kaneko K, Ogawa T et al (2005) Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions. Biomaterials 26:101–108. https://doi.org/10.1016/j.biomaterials.2004.02.009 Altenberger I, Nalla RK, Sano Y, Wagner L, Ritchie RO (2012) On the effect of deep-rolling and laser peening on the stress-controlled low and high cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550°C. Int J Fatigue 44:292–302. https://doi.org/10.1016/j.ijfatigue.2012.03.008 Chattoraj I (2011) Stress corrosion cracking (SCC) and hydrogen-assisted cracking in titanium alloys. Stress Corros Crack Theory Pract 381–408. https://doi.org/10.1533/9780857093769.3.381 Hongchao Q (2015) Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications. Appl Surf Sci 351:524–530. https://doi.org/10.1016/j.apsusc.2015.05.098 Li X, Wang Y, Zhang P, Li B, Song X, Chen J (2014) Effect of pre-strain on hydrogen embrittlement of high strength steels. Mater Sci Eng A 616:116–122. https://doi.org/10.1016/j.msea.2014.07.085 Yilbas B, Coban A (1998) Hydrogen Emberittlement Modification Of Ti-6Al-4V Alloy With Surface By TiN Coating. J Hydrog Energy 23:483–489 Marín-Cruz J and M-CJ (2008) Corrosion behavior of titanium and nickel-based alloys in HCl and HCl + H 2 S environments. Int J Electrochem Sci 3:346–355 Beck FH (1975) Effect of hydrogen on the mechanical properties of titanium and its alloys. Ohio State Univ Rep Dissertati:1–15 Eliezer D, Tal-Gutelmacher E, Cross CE, Boellinghaus T (2006) Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments. Mater Sci Eng A 433:298–304. https://doi.org/10.1016/j.msea.2006.06.088 Cotton JD, Hellenbrand PJ, Bryan DJ et al (2014) The effect of hydrogen on the fracture toughness of Ti-5Mo-5V-5Al-3Cr. TMS Annu Meet:73–78. https://doi.org/10.1002/9781118889879.ch10 Jiang YF, Zhang B, Zhou Y, Wang JQ, Han EH, Ke W (2018) Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel. J Mater Sci Technol 34:1344–1348. https://doi.org/10.1016/j.jmst.2017.11.008 Li C, Si X, Cao J, Qi J, Dong Z, Feng J (2019) Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction. J Mater Sci Technol 35:2470–2476. https://doi.org/10.1016/j.jmst.2019.07.023 Huang J, Zhang KM, Jia YF, Zhang CC, Zhang XC, Ma XF, Tu ST (2019) Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment. J Mater Sci Technol 35:409–417. https://doi.org/10.1016/j.jmst.2018.10.003