Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology

Coordination Chemistry Reviews - Tập 474 - Trang 214826 - 2023
Takane Imaoka1,2, Akiyoshi Kuzume2,3, Makoto Tanabe2,4, Takamasa Tsukamoto1,2,5, Tetsuya Kambe1,2, Kimihisa Yamamoto1,2
1Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
2ERATO-JST Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
3Clean Energy Research Center, University of Yamanashi, Kofu 400-8510, Japan
4Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, 960-1295, Japan
5PRESTO-JST, Kawaguchi, Saitama, 332-0012 Japan

Tài liệu tham khảo

Seetharaman, 2005, Fundamen. Metallur., xiii, 10.1016/B978-1-85573-927-7.50017-0 Chapter 5 Heterogeneous catalysis, Stud Surf Sci Catal. 123 (1999) 209–287. 10.1016/s0167-2991(99)80008-1. Ndolomingo, 2020, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts, J Mater Sci., 55, 6195, 10.1007/s10853-020-04415-x Astruc, 2020, Introduction: Nanoparticles in Catalysis, Chem Rev., 120, 461, 10.1021/acs.chemrev.8b00696 Frenkel, 2001, A View from the Inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles, J. Phys. Chem. B., 105, 12689, 10.1021/jp012769j Halperin, 1986, QUANTUM SIZE EFFECTS IN METAL PARTICLES, Rev. Modern Pys., 58, 533, 10.1103/RevModPhys.58.533 Lopez-Acevedo, 2010, Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters, Nature Chem., 2, 329, 10.1038/nchem.589 Satoh, 2008, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nature Nanotech., 3, 106, 10.1038/nnano.2008.2 Wilson, 1993, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science., 262, 1242, 10.1126/science.262.5137.1242 Steenbergen, 2014, Quantum Size Effects in the Size-Temperature Phase Diagram of Gallium: Structural Characterization of Shape-Shifting Clusters, Chem. Eur. J., 21, 2862, 10.1002/chem.201405718 Yamazoe, 2014, Nonscalable Oxidation Catalysis of Gold Clusters, Acc. Chem. Res., 47, 816, 10.1021/ar400209a Crampton, 2016, Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters, Nature Commun., 7, 153, 10.1038/ncomms10389 Jeon, 2021, Reversible disorder-order transitions in atomic crystal nucleation, Science., 371, 498, 10.1126/science.aaz7555 Nakamuro, 2021, Capturing the Moment of Emergence of Crystal Nucleus from Disorder, J Am Chem Soc., 10.1021/jacs.0c12100 Cao, 2020, Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube, Natture Chem., 1 Bertrand, 1963, The Crystal Structure of Cesium Dodecachlorotrirhenate-(III), a Compound with a New Type of Metal Atom Cluster, Inorg. Chem., 2, 1166, 10.1021/ic50010a019 Cotton, 1964, Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity, Science., 145, 1305, 10.1126/science.145.3638.1305 Cotton, 1966, Transition-metal compounds containing clusters of metal atoms, Q. Rev. Chem. Soc., 20, 389, 10.1039/qr9662000389 Chen, 2015, Initial Reaction Mechanism of Platinum Nanoparticle in Methanol-Water System and the Anomalous Catalytic Effect of Water, Nano Lett., 15, 5961, 10.1021/acs.nanolett.5b02098 Yao, 2012, Probing Nucleation Pathways for Morphological Manipulation of Platinum Nanocrystals, J. Am. Chem. Soc., 134, 9410, 10.1021/ja302642x Harada, 2012, Nucleation and Aggregative Growth Process of Platinum Nanoparticles Studied by in Situ Quick XAFS Spectroscopy, Langmuir., 28, 2415, 10.1021/la204031j Gebauer, 2011, Prenucleation clusters and non-classical nucleation, Nano Today., 6, 564, 10.1016/j.nantod.2011.10.005 Mitchell, 2021, Atomically precise control in the design of low-nuclearity supported metal catalysts, Nat Rev Mater., 6, 969, 10.1038/s41578-021-00360-6 Zheng, 2022, Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis, Nano Res., 15, 7806, 10.1007/s12274-022-4429-9 Toshima, 1998, Bimetallic nanoparticles—novel materials for chemical and physical applications, New. J. Chem., 22, 1179, 10.1039/a805753b Tomalia, 1985, A new class of polymers: starburst-dendritic macromolecules, Polym. J., 17, 117, 10.1295/polymj.17.117 Tomalia, 1990, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angew. Chem. Int. Ed. Engl., 29, 138, 10.1002/anie.199001381 Tomalia, 1987, III. The importance of branch junction symmetry in the development of topological shell molecules, J Am Chem Soc., 109, 1601, 10.1021/ja00239a068 Tomalia, 1987, 4. Covalently fixed unimolecular assemblages reiminiscent of spheroidal micelles, Macromolecules., 20, 1164, 10.1021/ma00171a051 Naylor, 1989, 5. Molecular shape control, J. Am. Chem. Soc., 111, 2339, 10.1021/ja00188a079 Ottaviani, 1994, Characterization of starburst dendrimers by the EPR technique. 1. Copper complexes in water solution, J. Am. Chem. Soc., 116, 661, 10.1021/ja00081a029 Zhao, 1998, Preparation of Cu Nanoclusters within Dendrimer Templates, J. Am. Chem. Soc., 120, 4877, 10.1021/ja980438n Esumi, 1998, Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer, Langmuir., 14, 3157, 10.1021/la980162x Balogh, 1998, Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters, J. Am. Chem. Soc., 120, 7355, 10.1021/ja980861w de, 1993, Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations, Angew. Chem. Int. Ed. Engl., 32, 1308, 10.1002/anie.199313081 A. Bosman, Janssen, E.W. Meijer, About Dendrimers: Structure, Physical Properties, and Applications, Chem. Rev. 99 (1999) 1665–1688. 10.1021/cr970069y. Vögtle, 2000, Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery, J. Am. Chem. Soc., 122, 10398, 10.1021/ja993745h Esumi, 2000, Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver, Langmuir., 16, 2604, 10.1021/la991291w He, 1999, Electrostatic Multilayer Deposition of a Gold−Dendrimer Nanocomposite, Chem. Mater., 11, 3268, 10.1021/cm990311c Esumi, 2002, Comparison of PAMAM–Au and PPI–Au Nanocomposites and Their Catalytic Activity for Reduction of 4-Nitrophenol, J. Colloid Interf. Sci., 254, 402, 10.1006/jcis.2002.8580 Hayakawa, 2003, Preparation of Gold−Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol, Langmuir., 19, 5517, 10.1021/la034339l García-Martínez, 2004, Extraction of Au Nanoparticles Having Narrow Size Distributions from within Dendrimer Templates, J. Am. Chem. Soc., 126, 16170, 10.1021/ja046567n Ostojic, 2018, 0000–0001-5186-4878, Electrocatalytic Study of the Oxygen Reduction Reaction at Gold Nanoparticles in the Absence and Presence of Interactions with SnOx Supports, J. Am. Chem. Soc., 140, 1, 10.1021/jacs.8b08036 Crooks, 1999, Dendrimer-Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis, Adv. Mater., 11, 217, 10.1002/(SICI)1521-4095(199903)11:3<217::AID-ADMA217>3.0.CO;2-7 Zhao, 1999, Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles, Angew. Chem. Int. Ed., 38, 364, 10.1002/(SICI)1521-3773(19990201)38:3<364::AID-ANIE364>3.0.CO;2-L Ye, 2005, Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles, J. Am. Chem. Soc., 127, 4930, 10.1021/ja0435900 Chechik, 2000, Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts, Journal of the American, Chemical., 122, 1243 Garcia-Martinez, 2005, Dendrimer-Encapsulated Pd Nanoparticles as Aqueous, Room-Temperature Catalysts for the Stille Reaction, J. Am. Chem. Soc., 127, 5097, 10.1021/ja042479r Yeung, 2001, Heck Heterocoupling within a Dendritic Nanoreactor, Nano Lett., 1, 14, 10.1021/nl0001860 Balogh, 1999, Formation of Silver and Gold Dendrimer Nanocomposites, J. Nanopart. Res., 1, 353, 10.1023/A:1010060404024 Kéki, 2000, Zsuga, Silver Nanoparticles by PAMAM-Assisted Photochemical Reduction of Ag(+), J. Colloid Interf. Sci., 229, 550, 10.1006/jcis.2000.7011 Sun, 2004, One-Step Preparation and Characterization of Poly(propyleneimine) Dendrimer-Protected Silver Nanoclusters, Macromolecules., 37, 7105, 10.1021/ma048847t Nazarpoor, 2013, Dendrimer-mediated synthesis of supported rhodium nanoparticles with controlled size: Effect of pH and dialysis, J. Colloid Interf. Sci., 398, 22, 10.1016/j.jcis.2013.02.005 Higaki, 2016, Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde, Nanoscale., 8, 11371, 10.1039/C6NR01460G Knecht, 2006, Synthesis, Characterization, and Magnetic Properties of Dendrimer-Encapsulated Nickel Nanoparticles Containing <150 Atoms, Chem. Mater., 18, 5039, 10.1021/cm061272p Bronstein, 2011, Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles, Chem. Rev., 111, 5301, 10.1021/cr2000724 Myers, 2011, Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications, Chem. Sci., 2, 1632, 10.1039/c1sc00256b Peng, 2008, Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances, Chem. Soc. Rev., 37, 1619, 10.1039/b716441f Wang, 2016, Bimetallic Dendrimer-encapsulated Nanoparticle Catalysts, Polym Rev., 56, 486, 10.1080/15583724.2015.1110167 Yamamoto, 2019, New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers, Chem. Rev., 120, 1397, 10.1021/acs.chemrev.9b00188 Scott, 2004, Bimetallic palladium-gold dendrimer-encapsulated catalysts, J. Am. Chem. Soc., 126, 15583, 10.1021/ja0475860 Knecht, 2008, Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations, Chem. Mater., 20, 1019, 10.1021/cm0717817 Scott, 2005, Titania-Supported PdAu Bimetallic Catalysts Prepared from Dendrimer-Encapsulated Nanoparticle Precursors, J. Am. Chem. Soc., 127, 1380, 10.1021/ja044446h Yancey, 2010, Electrochemical Synthesis and Electrocatalytic Properties of Au@Pt Dendrimer-Encapsulated Nanoparticles, J. Am. Chem. Soc., 132, 10988, 10.1021/ja104677z Yancey, 2012, Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory, Chem. Sci., 3, 1033, 10.1039/c2sc00971d Ye, 2007, Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction, J. Am. Chem. Soc., 129, 3627, 10.1021/ja068078o Myers, 2009, X-ray Absorption Study of PdCu Bimetallic Alloy Nanoparticles Containing an Average of ∼64 Atoms, Chem. Mater., 21, 4824, 10.1021/cm901378x Knecht, 2008, Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles: Effect of the Template on Nanoparticle Formation, Chem. Mater., 20, 5218, 10.1021/cm8004198 Zheng, 2002, Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence, Journal of the American, Chemical., 124, 13982 Zheng, 2003, High quantum yield blue emission from water-soluble Au8 nanodots, J. Am. Chem. Soc., 125, 7780, 10.1021/ja035473v Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Selective synthesis of Rh5 carbonyl clusters within a polyamine dendrimer for chemoselective reduction of nitro aromatics, Chem. Commun. 50 (2014) 6526–4. 10.1039/c4cc00976b. Tanaka, 2011, Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging, Angew. Chem. Int. Ed., 50, 431, 10.1002/anie.201004907 Mizugaki, 2009, Controlled Synthesis of Pd Clusters in Subnanometer Range Using Poly(propylene imine) Dendrimers, Chem. Lett., 38, 1118, 10.1246/cl.2009.1118 Crooks, 2001, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis, Acc. Chem. Res., 34, 181, 10.1021/ar000110a Suzuki, 2010, Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres, Nature Chem., 2, 25, 10.1038/nchem.446 Nihei, 2018, Ferrihydrite Particle Encapsulated within a Molecular Organic Cage, J. Am. Chem. Soc., 140, 17753, 10.1021/jacs.8b10957 McCaffrey, 2014, Template Synthesis of Gold Nanoparticles with an Organic Molecular Cage, J. Am. Chem. Soc., 136, 1782, 10.1021/ja412606t Chen, 2020, Chain-End Functionalized Polymers for the Controlled Synthesis of Sub-2 nm Particles, J. Am. Chem. Soc., 142, 7350, 10.1021/jacs.0c02244 Chen, 2016, Polyelemental nanoparticle libraries, Science., 352, 1565, 10.1126/science.aaf8402 Takao, 2012, Incarceration of (PdO)n and Pdn Clusters by Cage-Templated Synthesis of Hollow Silica Nanoparticles, Angew. Chem. Int. Ed., 51, 5893, 10.1002/anie.201201288 Yamamoto, 2014, Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer, Acc. Chem. Res., 47, 1127, 10.1021/ar400257s Imaoka, 2019, Wet-Chemical Strategy for Atom-Precise Metal Cluster Catalysts, Bull. Chem. Soc. Jpn., 92, 941, 10.1246/bcsj.20190008 Yamamoto, 2006, Dendrimer complexes based on fine-controlled metal assembling, Bull. Chem. Soc. Jpn., 79, 511, 10.1246/bcsj.79.511 Imaoka, 2005, Probing Stepwise Complexation in Phenylazomethine Dendrimers by a Metallo-Porphyrin Core, J. Am. Chem. Soc., 127, 13896, 10.1021/ja0524797 T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, K. Yamamoto, Magic Number Pt13 and Misshapen Pt12 Clusters: Which One is the Better Catalyst?, J. Am. Chem. Soc. 135 (2013) 13089−13095-13095. 10.1021/ja405922m. Kitazawa, 2012, Synthesis of a Dendrimer Reactor for Clusters with a Magic Number, Chem. Lett., 41, 828, 10.1246/cl.2012.828 Higuchi, 2003, Control of stepwise radial complexation in dendritic polyphenylazomethines, J. Am. Chem. Soc., 125, 9988, 10.1021/ja035608x Albrecht, 2014, Stepwise radial complexation from the outer layer to the inner layer of a dendritic ligand: a phenylazomethine dendrimer with an inverted coordination sequence, Chem. Commun., 50, 12177, 10.1039/C4CC05007J Imaoka, 2015, Finding the Most Catalytically Active Platinum Clusters With Low Atomicity, Angew. Chem. Int. Ed., 127, 9948, 10.1002/ange.201504473 Takanashi, 2007, Heterometal assembly in dendritic polyphenylazomethines, Bull. Chem. Soc. Jpn., 80, 1563, 10.1246/bcsj.80.1563 Nakamula, 2011, A Uniform Bimetallic Rhodium/Iron Nanoparticle Catalyst for the Hydrogenation of Olefins and Nitroarenes, Angew. Chem. Int. Ed., 50, 5830, 10.1002/anie.201102836 Takahashi, 2017, Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons, Sci. Adv., 3, e1700101, 10.1126/sciadv.1700101 Tsukamoto, 2018, Atom-hybridization for synthesis of polymetallic clusters, Nature Commun., 9, 468, 10.1038/s41467-018-06422-8 Tsukamoto, 2020, Quantum Materials Exploration by Sequential Screening Technique of Heteroatomicity, J. Am. Chem. Soc., 142, 19078, 10.1021/jacs.0c06653 Moriai, 2020, Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1-Nanometer Catalyst, Angew. Chem. Int. Ed., 59, 23051, 10.1002/anie.202010190 Tanaka, 2013, Tetraplatinum cluster complexes bearing hydrophilic anchors as precursors for γ-Al2O3-supported platinum nanoparticles, Dalton Trans., 42, 12662, 10.1039/c3dt50670c Huard, 2019, Atomic Structure of a Fluorescent Ag8 Cluster Templated by a Multistranded DNA Scaffold, J. Am. Chem. Soc., 141, 11465, 10.1021/jacs.8b12203 Urushizaki, 2015, Synthesis and Catalytic Application of Ag44 Clusters Supported on Mesoporous Carbon, J. Phys. Chem. C., 119, 27483, 10.1021/acs.jpcc.5b08903 Imaoka, 2017, Platinum clusters with precise numbers of atoms for preparative-scale catalysis, Nature Commun., 8, 43, 10.1038/s41467-017-00800-4 Fortea-Pérez, 2017, The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry, Nature Mater., 16, 760, 10.1038/nmat4910 Mon, 2018, Synthesis of Densely Packaged, Ultrasmall Pt 02Clusters within a Thioether-Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature, Angew. Chem. Int. Ed., 415, 623 Kratzl, 2019, Generation and Stabilization of Small Platinum Clusters Pt 12± x Inside a Metal-Organic Framework, J. Am. Chem. Soc., 141, 13962, 10.1021/jacs.9b07083 Liu, 2016, Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D, Nature Mater., 1 Yonesato, 2019, Controlled Assembly Synthesis of Atomically Precise Ultrastable Silver Nanoclusters with Polyoxometalates, J. Am. Chem. Soc., 141, 19550, 10.1021/jacs.9b10569 Wang, 2018, Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel, Nature Commun., 9, 2094, 10.1038/s41467-018-04499-9 Uchida, 2019, Rapid formation of small mixed-valence luminescent silver clusters via cation-coupled electron-transfer in a redox-active porous ionic crystal based on dodecamolybdophosphate, Nanoscale., 11, 5460, 10.1039/C9NR00103D Davidson, 2018, Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materials Synthesis and Catalytic Applications, ACS Appl. Nano Mater., 1, 4386, 10.1021/acsanm.8b00967 Ye, 2017, Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts, Acc. Chem. Res., 50, 1894, 10.1021/acs.accounts.7b00232 Huang, 2008, Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation, Nano Lett., 8, 2027, 10.1021/nl801325m Witham, 2010, Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles, Nature Chem., 2, 36, 10.1038/nchem.468 R. Ye, B. Yuan, J. Zhao, W.T. Ralston, C.-Y. Wu, E.U. Barin, F.D. Toste, G.A. Somorjai, Metal Nanoparticles Catalyzed Selective Carbon–Carbon Bond Activation in the Liquid Phase, J. Am. Chem. Soc. (2016) jacs.6b03977-5. 10.1021/jacs.6b03977. Deraedt, 2017, Platinum and Other Transition Metal Nanoclusters (Pd, Rh) Stabilized by PAMAM Dendrimer as Excellent Heterogeneous Catalysts: Application to the Methylcyclopentane (MCP) Hydrogenative Isomerization, Nano Lett., 17, 1853, 10.1021/acs.nanolett.6b05156 Lang, 2003, Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts, J. Am. Chem. Soc., 125, 14832, 10.1021/ja0364120 Lang, 2004, Synthesis and Characterization of Dendrimer Templated Supported Bimetallic Pt−Au Nanoparticles, J Am Chem Soc., 126, 12949, 10.1021/ja046542o Takahashi, 2013, Formation of a pt12 cluster by single-atom control that leads to enhanced reactivity: hydrogenation of unreactive olefins, Angew. Chem. Int. Ed., 52, 7419, 10.1002/anie.201302860 Takahashi, 2015, Reactivities of platinum subnanocluster catalysts for the oxidation reaction of alcohols, RSC Adv., 5, 100693, 10.1039/C5RA20227B Takahashi, 2013, A highly-active and poison-tolerant Pt12 sub-nanocluster catalyst for the reductive amination of aldehydes with amines, Dalton Trans., 42, 15919, 10.1039/c3dt52099d Inomata, 2018, Size-Dependent Oxidation State and CO Oxidation Activity of Tin Oxide Clusters, ACS Catal., 8, 451, 10.1021/acscatal.7b02981 Sonobe, 2020, Enhanced Catalytic Performance of Subnano Copper Oxide Particles, ACS Nano., 14, 1804, 10.1021/acsnano.9b07582 L. Liu, A. Corma, Evolution of Isolated Atoms and Clusters in Catalysis, Trends Chem. 2 (2020) 383–400. 10.1016/j.trechm.2020.02.003. Hu, 2020, Ceria-supported ruthenium clusters transforming from isolated single atoms for hydrogen production via decomposition of ammonia, Appl Catal B Environ., 268, 10.1016/j.apcatb.2019.118424 Kusada, 2014, Solid Solution Alloy Nanoparticles of Immiscible Pd and Ru Elements Neighboring on Rh: Changeover of the Thermodynamic Behavior for Hydrogen Storage and Enhanced CO-Oxidizing Ability, J. Am. Chem. Soc., 136, 1864, 10.1021/ja409464g Yao, 2018, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science., 359, 1489, 10.1126/science.aan5412 Kobayashi, 2010, Atomic-Level Pd−Pt Alloying and Largely Enhanced Hydrogen-Storage Capacity in Bimetallic Nanoparticles Reconstructed from Core/Shell Structure by a Process of Hydrogen Absorption/Desorption, J. Am. Chem. Soc., 132, 5576, 10.1021/ja1013163 Cesari, 2021, Metal carbonyl clusters of groups 8–10: synthesis and catalysis, Chem. Soc. Rev., 50, 9503, 10.1039/D1CS00161B Mason, 1968, The crystal structure of ruthenium carbonyl, Ru 3 (CO) 12, J Chem Soc Inorg Phys Theor., 778, 10.1039/j19680000778 Wei, 1967, Crystal structure of twinned tetrarhodium dodecacarbonyl, J Am Chem Soc., 89, 4792, 10.1021/ja00994a043 Mingos, 1984, Polyhedral Skeletal Electron Pair Approach, Acc. Chem. Res., 17, 311, 10.1021/ar00105a003 Femoni, 2011, Icosahedral Pt-Centered Pt(13) and Pt(19) Carbonyl Clusters Decorated by [Cd(5)(μ-Br)(5)Br(5–x)(solvent)(x)](x+) Rings Reminiscent of the Decoration of Au-Fe-CO and Au-Thiolate Nanoclusters: A Unifying Approach to Their Electron Counts, J. Am. Chem. Soc., 133, 2406, 10.1021/ja111235v Longoni, 1976, Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n =.apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers, J. Am. Chem. Soc., 98, 7225, 10.1021/ja00439a020 D.M. Washecheck, E.J. Wucherer, L.F. Dahl, A. Ceriotti, G. Longoni, M. Manassero, M. Sansoni, P. Chini, Synthesis, structure, and stereochemical implication of the [Pt19 (CO) 12 (. mu. 2-CO) 10] 4-tetraanion: a bicapped triple-decker all-metal sandwich of idealized fivefold (D5h) geometry, J. Am. Chem. Soc. 101 (1979) 6110–6112. 10.1021/ja00514a039. Heider, 2021, Molecular Silicon Clusters, Chem Rev., 121, 9674, 10.1021/acs.chemrev.1c00052 Schnepf, 2010, Metalloid cluster compounds of germanium : novel structural motives on the way to elemental germanium !, New J Chem., 34, 2079, 10.1039/c0nj00263a Kesanli, 2001, The closo-[Sn9M(CO)3]4− Zintl Ion Clusters where M=Cr, Mo, W: Two Structural Isomers and Their Dynamic Behavior, Chem. Eur. J., 7, 5277, 10.1002/1521-3765(20011217)7:24<5277::AID-CHEM5277>3.0.CO;2-C B. Weinert, S. Mitzinger, S. Dehnen, (Multi-)Metallic Cluster Growth, Chem. Eur. J. 85 (2018) 383–22. 10.1002/chem.201704904. Yamada, 2009, Planar Tetranuclear and Dumbbell-Shaped Octanuclear Palladium Complexes with Bridging Silylene Ligands, Angew. Chem. Int. Ed., 48, 568, 10.1002/anie.200804728 Tanabe, 2011, Tetrapalladium Complex with Bridging Germylene Ligands. Structural Change of the Planar Pd4Ge3 Core, J Am Chem Soc., 133, 18598, 10.1021/ja208565q Negishi, 2004, Magic-Numbered Au n Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization, J Am Chem Soc., 126, 6518, 10.1021/ja0483589 Negishi, 2015, A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected au clusters, J. Am. Chem. Soc., 137, 1206, 10.1021/ja5109968 Walter, 2008, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci., 105, 9157, 10.1073/pnas.0801001105 Jadzinsky, 2007, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution, Science., 318, 430, 10.1126/science.1148624 X. Du, R. Jin, Atomic-precision engineering of metal nanoclusters., Dalton Transactions Camb Engl 2003. 49 (2020) 10701–10707. 10.1039/d0dt01853h. Qian, 2012, Monoplatinum Doping of Gold Nanoclusters and Catalytic Application, J. Am. Chem. Soc., 134, 16159, 10.1021/ja307657a Fields-Zinna, 2009, Mass Spectrometry of Small Bimetal Monolayer-Protected Clusters, Langmuir., 25, 7704, 10.1021/la803865v Negishi, 2010, Isolation, structure, and stability of a dodecanethiolate -protected Pd1Au24 cluster, Phys Chem Chem Phys., 12, 6219, 10.1039/b927175a Niihori, 2015, Understanding Ligand-Exchange Reactions on Thiolate-Protected Gold Clusters by Probing Isomer Distributions Using Reversed-Phase High-Performance Liquid Chromatography, Acs Nano., 9, 9347, 10.1021/acsnano.5b03435 Negishi, 2010, Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping, Chem Commun., 46, 4713, 10.1039/c0cc01021a Li, 2018, A Correlated Series of Au/Ag Nanoclusters Revealing the Evolutionary Patterns of Asymmetric Ag Doping, J. Am. Chem. Soc., 140, 14235, 10.1021/jacs.8b08335 Kurashige, 2013, Synthesis of stable CunAu25-n nanoclusters (n = 1–9) using selenolate ligands, Chem. Commun., 10.1039/c3cc41210e Jin, 2020, Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures, Chem Rev. Dietz, 1981, Laser production of supersonic metal cluster beams, J Chem Phys., 74, 6511, 10.1063/1.440991 Duncan, 2012, Invited Review Article: Laser vaporization cluster sources, Rev. Sci. Inst., 83, 041101, 10.1063/1.3697599 Nonose, 1990, Structure and reactivity of bimetallic cobalt-vanadium (ConVm) clusters, J Phys Chem., 94, 2744, 10.1021/j100370a006 Bromann, 1996, Controlled Deposition of Size-Selected Silver Nanoclusters, Science., 274, 956, 10.1126/science.274.5289.956 Yasumatsu, 2005, Unisized two-dimensional platinum clusters on silicon(111)-7×7 surface observed with scanning tunneling microscope, J. Chem. Phys., 123, 10.1063/1.2018639 Yasumatsu, 2014, Determination of Exact Positions of Individual Tungsten Atoms in Unisize Tungsten Oxide Clusters Supported on Carbon Substrate by HAADF-STEM Observation, J. Phys. Chem. C., 118, 1706, 10.1021/jp4083745 Zhang, 2013, Advanced Nanocluster Ion Source Based on High-Power Impulse Magnetron Sputtering and Time-Resolved Measurements of Nanocluster Formation, J. Phys. Chem. A., 117, 10211, 10.1021/jp406521v Harms, 1990, Gas-phase reactivity of metal alloy clusters, J Am Chem Soc., 112, 5673, 10.1021/ja00170a060 Mattei, 2019, Gas-Phase Synthesis of Trimetallic Nanoparticles, Chem Mater., 31, 2151, 10.1021/acs.chemmater.9b00129 Gorey, 2019, Preparation of Size- and Composition-Controlled Pt n Sn x /SiO2 (n = 4, 7, 24) Bimetallic Model Catalysts with Atomic Layer Deposition, J Phys Chem C., 123, 16194, 10.1021/acs.jpcc.9b02745 Imaoka, 2019, Isomerizations of a Pt4 cluster revealed by spatiotemporal microscopic analysis, Chem. Commun., 55, 4753, 10.1039/C9CC00530G Henninen, 2020, The Structure of Sub-nm Platinum Clusters at Elevated Temperatures, Angew. Chem. Int. Ed., 59, 839, 10.1002/anie.201911068 Siburian, 2012, Formation Process of Pt Subnano-Clusters on Graphene Nanosheets, J Phys Chem C., 116, 22947, 10.1021/jp307327e Shen, 2014, Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets, Phys Chem Chem Phys., 16, 21609, 10.1039/C4CP03048F Yasumatsu, 2014, Novel catalytic functions induced by charge accumulation at subnano interface between unisize metal cluster disk and semiconductor surface, Surf Interface Anal., 46, 1204, 10.1002/sia.5646 Ishizaki, 2012, Growth of Pt Subnano Clusters on Limited Surface Areas of Prussian Blue Nanoparticles, J. Inorg. Organomet. Polym. Mater., 23, 216, 10.1007/s10904-012-9721-9 Wang, 2017, MoO 3 subnanoclusters on ultrasmall mesoporous silica nanoparticles: an efficient catalyst for oxidative desulfurization, RSC Adv., 7, 44827, 10.1039/C7RA08566D Wang, 2018, Improving the stability of subnano-MoO3/meso-SiO2 catalyst through amino-functionalization, Funct Mater Lett., 11, 1850003, 10.1142/S1793604718500030 Wakizaka, 2020, Subnano-transformation of molybdenum carbide to oxycarbide, Nanoscale., 12, 15814, 10.1039/D0NR04495D Liu, 2019, Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction, Acs Appl Mater Inter., 11, 41432, 10.1021/acsami.9b15397 Yang, 2021, Subnano-FeO x Clusters Anchored in an Ultrathin Amorphous Al2O3 Nanosheet for Styrene Epoxidation, Acs Catal., 11, 11542, 10.1021/acscatal.1c01366 Chen, 2020, Synthesis of Quasi-Bilayer Subnano Metal-Oxide Interfacial Cluster Catalysts for Advanced Catalysis, Small., 16, 2005571, 10.1002/smll.202005571 Fujiwara, 2016, Pd Subnano-Clusters on TiO2 for Solar-Light Removal of NO, Acs Catal., 6, 1887, 10.1021/acscatal.5b02685 Lyu, 2019, Highly efficient hydrogen peroxide direct synthesis over a hierarchical TS-1 encapsulated subnano Pd/PdO hybrid, Rsc Adv., 9, 13398, 10.1039/C9RA02452B Hu, 2021, Synergetic Subnano Ni- and Mn-Oxo Clusters Anchored by Chitosan Oligomers on 2D g-C3N4 Boost Photocatalytic CO2 Reduction, Solar RRL., 5, 2000472, 10.1002/solr.202000472 Hinokuma, 2014, Subnano-particle Ce catalyst prepared by pulsed arc-plasma process, Catal Commun., 54, 81, 10.1016/j.catcom.2014.05.025 Cheng, 2019, Subnano-Sized Pt–Au Alloyed Clusters as Enhanced Cocatalyst for Photocatalytic Hydrogen Evolution, Chem Asian J., 14, 2112, 10.1002/asia.201900453 Kuzume, 2019, Ultrahigh sensitive Raman spectroscopy for subnanoscience: Direct observation of tin oxide clusters, Sci Adv., 5, eaax6455, 10.1126/sciadv.aax6455 Kuzume, 2020, Tin oxide subnanoparticles: a precisely-controlled synthesis, subnano-detection for their detailed characterisation and applications, Dalton Trans., 49, 13512, 10.1039/D0DT02186E Tang, 2021, Development of Highly Sensitive Raman Spectroscopy for Subnano and Single-Atom Detection, Molecules., 26, 5099, 10.3390/molecules26165099 Tang, 2021, Structural Effect of Polyvinylpyrrolidone-stabilized Au Nanostars for SERS Application, Chem Lett., 50, 248, 10.1246/cl.200720 Ye, 2021, Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach, Nano Res., 1 Ye, 2020, Surface Hexagonal Pt1Sn1 Intermetallic on Pt Nanoparticles for Selective Propane Dehydrogenation, Acs Appl Mater Inter., 12, 25903, 10.1021/acsami.0c05043 Zhang, 2019, Diffusion-Limited Formation of Nonequilibrium Intermetallic Nanophase for Selective Dehydrogenation, Nano Lett., 19, 4380, 10.1021/acs.nanolett.9b00994 Ye, 2018, Structure Determination of a Surface Tetragonal Pt1Sb1 Phase on Pt Nanoparticles, Chem Mater., 30, 4503, 10.1021/acs.chemmater.8b02071 Wei, 2016, Subnano Pt Particles from a First-Principles Stochastic Surface Walking Global Search, J. Chem. Theory Comput., 12, 4698, 10.1021/acs.jctc.6b00556 Qi, 2015, Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods, Comp Mater Sci., 96, 268, 10.1016/j.commatsci.2014.09.033 Charkin, 2019, DFT modeling of successive hydrogenated subnano-size aluminum clusters, Chem Phys., 522, 112, 10.1016/j.chemphys.2019.02.007 Gao, 2017, Theoretical insight into Cobalt subnano-clusters adsorption on α-Al2O3 (0001), J Solid State Chem., 246, 176, 10.1016/j.jssc.2016.11.016 Haruta, 2018, Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetry, Nature Commun., 9, 3758, 10.1038/s41467-018-06244-8 Tsukamoto, 2019, Periodicity of molecular clusters based on symmetry-adapted orbital model, Nature Commun., 10, 3727, 10.1038/s41467-019-11649-0 Tian, 2019, Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts, J Catal., 369, 95, 10.1016/j.jcat.2018.10.029 Shahzad, 2019, DFT Study on the Interaction of Subnanometer Cobalt Clusters with Pristine/Defective Graphene, Bull. Korean Chem. Soc., 40, 446, 10.1002/bkcs.11742 Zhou, 2008, Hydrogen dissociative chemisorption and desorption on saturated subnano palladium clusters (Pd n, n = 2–9), Phys Chem Chem Phys., 10, 5445, 10.1039/b804877k Sun, 2007, Collapse in Crystalline Structure and Decline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to 1 nm, J. Am. Chem. Soc., 129, 15465, 10.1021/ja076177b Batson, 2007, Motion of Gold Atoms on Carbon in the Aberration-Corrected STEM, Microsc Microanal., 14, 89, 10.1017/S1431927608080197 Bals, 2012, Atomic scale dynamics of ultrasmall germanium clusters, Nature Commun., 3, 897, 10.1038/ncomms1887 Lee, 2013, Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore, Nature Commun., 4, 1650, 10.1038/ncomms2671 Z.W. Wang, R.E. Palmer, Direct atomic imaging and dynamical fluctuations of the tetrahedral Au20 cluster, Nanoscale. 4 (2012) 4947–4. 10.1039/c2nr31071f. Heiz, 1999, Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters: Each Atom Counts, J. Am. Chem. Soc., 121, 3214, 10.1021/ja983616l Tyo, 2015, Catalysis by clusters with precise numbers of atoms, Nature Nanotech., 10, 577, 10.1038/nnano.2015.140 Vajda, 2015, Catalysis Applications of Size-Selected Cluster Deposition, ACS Catal., 5, 7152, 10.1021/acscatal.5b01816 Fung, 2017, Exploring Structural Diversity and Fluxionality of Ptn(n = 10–13) Clusters from First-Principles, J. Phys. Chem. C., 121, 10796, 10.1021/acs.jpcc.6b11968 Zhai, 2017, Fluxionality of Catalytic Clusters: When It Matters and How to Address It, ACS Catal., 7, 1905, 10.1021/acscatal.6b03243 Jia, 2021, Tetrahedral Pt10 – Cluster with Unique Beta Aromaticity and Superatomic Feature in Mimicking Methane, J Phys Chem Lett., 12, 5115, 10.1021/acs.jpclett.1c01178 Balteanu, 2004, Reactions of platinum clusters 195Ptn ±, n = 1–24, with N 2O studied with isotopically enriched platinum, Phys. Chem. Chem. Phys., 6, 2910, 10.1039/B405211K Kambe, 2020, Superatomic Gallium Clusters in Dendrimers: Unique Rigidity and Reactivity Depending on their Atomicity, Adv. Mater., 1907167, 10.1002/adma.201907167 Zhang, 2020, Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces, Acc. Chem. Res., 53, 447, 10.1021/acs.accounts.9b00531 Zandkarimi, 2019, Dynamics of Subnanometer Pt Clusters Can Break the Scaling Relationships in Catalysis, J. Phys. Chem. Lett., 10, 460, 10.1021/acs.jpclett.8b03680 Spencer, 2008, A brief history of CALPHAD, Calphad., 32, 1, 10.1016/j.calphad.2007.10.001 Kobayashi, 2015, Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion, Acc. Chem. Res., 48, 1551, 10.1021/ar500413e Christensen, 1995, Size dependence of phase separation in small bimetallic clusters, J Phys Condens Matter., 7, 1047, 10.1088/0953-8984/7/6/008 Polte, 2015, Fundamental growth principles of colloidal metal nanoparticles – a new perspective, CrystEngComm., 17, 6809, 10.1039/C5CE01014D Dahan, 2016, Nanometric size dependent phase diagram of Bi–Sn, Calphad., 53, 136, 10.1016/j.calphad.2016.04.006 Bajaj, 2015, Phase stability in nanoscale material systems: extension from bulk phase diagrams, Nanoscale., 7, 9868, 10.1039/C5NR01535A Sopoušek, 2017, Au-Ni nanoparticles: Phase diagram prediction, synthesis, characterization, and thermal stability, Calphad., 58, 25, 10.1016/j.calphad.2017.05.002 Buceta, 2015, Controlling Bimetallic Nanostructures by the Microemulsion Method with Subnanometer Resolution Using a Prediction Model, Langmuir., 31, 7435, 10.1021/acs.langmuir.5b01455 Tojo, 2015, Understanding the Metal Distribution in Core-Shell Nanoparticles Prepared in Micellar Media, Nanoscale Res Lett., 10, 339, 10.1186/s11671-015-1048-3 Tao, 2008, Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles, Science., 322, 932, 10.1126/science.1164170 McGrady, 2021, Electronic structure and bonding in endohedral Zintl clusters, Chem Soc Rev. Inazu, 2022, Dynamic hetero-metallic bondings visualized by sequential atom imaging, Nat Commun., 13, 2968, 10.1038/s41467-022-30533-y Zou, 2022, Alloying at a Subnanoscale Maximizes the Synergistic Effect on the Electrocatalytic Hydrogen Evolution, Angewandte Chemie Int Ed., e202209675 Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081 Miracle, 2019, High entropy alloys as a bold step forward in alloy development, Nature Commun., 10, 1805, 10.1038/s41467-019-09700-1 George, 2019, High-entropy alloys, Nat Rev Mater., 4, 515, 10.1038/s41578-019-0121-4 Chen, 2018, A review on fundamental of high entropy alloys with promising high–temperature properties, J Alloy Compd., 760, 15, 10.1016/j.jallcom.2018.05.067 Yang, 2021, Determining the three-dimensional atomic structure of an amorphous solid, Nature., 592, 60, 10.1038/s41586-021-03354-0 Carey, 2015, Colloidal Quantum Dot Solar Cells, Chem Rev., 115, 12732, 10.1021/acs.chemrev.5b00063 Talapin, 2010, Prospects of colloidal nanocrystals for electronic and optoelectronic applications, Chem Rev., 110, 389, 10.1021/cr900137k Schwartzberg, 2006, Synthesis, Characterization, and Tunable Optical Properties of Hollow Gold Nanospheres †, J Phys Chem B., 110, 19935, 10.1021/jp062136a Mayer, 2011, Localized Surface Plasmon Resonance Sensors, Chem Rev., 111, 3828, 10.1021/cr100313v Wade, 1976, Advances in Inorganic Chemistry and Radiochemistry, Adv Inorg Chem Radiochem., 18, 1, 10.1016/S0065-2792(08)60027-8 Jemmis, 2003, Analogies between Boron and Carbon, Acc. Chem. Res., 36, 816, 10.1021/ar0300266 Taylor, 2017, Thermodynamic stability of ligand-protected metal nanoclusters, Nature Commun., 8, 1, 10.1038/ncomms15988 Knight, 1984, Electronic Shell Structure and Abundances of Sodium Clusters, Phys. Rev. Lett., 52, 2141, 10.1103/PhysRevLett.52.2141 Khanna, 1995, Atomic clusters: Building blocks for a class of solids, Phys Rev B., 51, 13705, 10.1103/PhysRevB.51.13705 Häkkinen, 2016, Electronic shell structures in bare and protected metal nanoclusters, Adv Phys X., 1, 467 de Heer, 1993, The physics of simple metal clusters: experimental aspects and simple models, Rev. Modern Phys., 65, 611, 10.1103/RevModPhys.65.611 Luo, 2014, Special and General Superatoms, Acc. Chem. Res., 47, 2931, 10.1021/ar5001583 Tsukamoto, 2021, Modern cluster design based on experiment and theory, Nat Rev Chem., 1 Koyasu, 2005, Selective Formation of MSi 16 (M = Sc, Ti, and V), J Am Chem Soc., 127, 4998, 10.1021/ja045380t Nishigaki, 2014, Chemically modified gold superatoms and superatomic molecules, Chem. Rec., 14, 897, 10.1002/tcr.201402011 Akola, 2008, On the Structure of Thiolate-Protected Au 25, J Am Chem Soc., 130, 3756, 10.1021/ja800594p Price, 2005, All-Aromatic, Nanometer-Scale, Gold-Cluster Thiolate Complexes, J Am Chem Soc., 127, 13750, 10.1021/ja053968+ Yang, 2013, All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures, Nature Commun., 4, 2422, 10.1038/ncomms3422 Weßing, 2018, The Mackay-Type Cluster [Cu43 Al12 ](Cp*)12: Open-Shell 67-Electron Superatom with Emerging Metal-Like Electronic Structure, Angew. Chem. Int. Ed., 57, 14630, 10.1002/anie.201806039 Sevov, 1991, A remarkable hypoelectronic indium cluster in K8In11, Inorg Chem., 30, 4875, 10.1021/ic00026a004 Hoch, 2002, Tetrapotassium nonastannide, K 4 Sn 9, Acta Crystallogr Sect C Cryst Struct Commun., 58, i45, 10.1107/S0108270102002032 Huang, 1999, Na 9 K 16 Tl 18 Cd 3: A Novel Phase Containing Tl 8 Cd 3 10 - and Tl 5 7 - Clusters 1, Inorg Chem., 38, 316, 10.1021/ic9807792 Luo, 2016, Reactivity of Metal Clusters, Chem Rev., 116, 14456, 10.1021/acs.chemrev.6b00230 Liu, 2018, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev., 118, 4981, 10.1021/acs.chemrev.7b00776 Du, 2019, Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties, Chem Rev., 120, 526, 10.1021/acs.chemrev.8b00726 Guan, 2016, Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures, Angew. Chem. Int. Ed., 55, 2820, 10.1002/anie.201510643 Kaden, 2009, Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces, Science., 326, 826, 10.1126/science.1180297 Moseler, 2012, Oxidation State and Symmetry of Magnesia-Supported Pd 13 O x Nanocatalysts Influence Activation Barriers of CO Oxidation, J Am Chem Soc., 134, 7690, 10.1021/ja211121m Bonanni, 2014, Reaction-Induced Cluster Ripening and Initial Size-Dependent Reaction Rates for CO Oxidation on Pt n/TiO 2(110)-(1×1), J. Am. Chem. Soc., 136, 8702, 10.1021/ja502867r Ke, 2015, Strong Local Coordination Structure Effects on Subnanometer PtO x Clusters over CeO 2 Nanowires Probed by Low-Temperature CO Oxidation, Acs Catal., 5, 5164, 10.1021/acscatal.5b00832 Yoon, 2005, Charging Effects on Bonding and Catalyzed Oxidation of CO on Au 8 Clusters on MgO, Science., 307, 403, 10.1126/science.1104168 Herzing, 2008, Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation, Science., 321, 1331, 10.1126/science.1159639 He, 2016, Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation, Nature Commun., 7, 12905, 10.1038/ncomms12905 Turner, 2008, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters, Nature., 454, 981, 10.1038/nature07194 Zhu, 2010, Thiolate-Protected Aun Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes, Adv Mater., 22, 1915, 10.1002/adma.200903934 Lee, 2009, Selective propene epoxidation on immobilized au(6–10) clusters: the effect of hydrogen and water on activity and selectivity, Angew. Chem. Int. Ed., 48, 1467, 10.1002/anie.200804154 Lei, 2010, Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects, Science., 328, 224, 10.1126/science.1185200 Vajda, 2009, Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane, Nature Mater., 8, 213, 10.1038/nmat2384 Huda, 2018, Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles, Angew. Chem. Int. Ed., 58, 1002, 10.1002/anie.201809530 Wang, 2017, The recent development of efficient Earth-abundant transition-metal nanocatalysts, Chem Soc Rev., 46, 816, 10.1039/C6CS00629A Deka, 2018, Cu-Based Nanoparticles as Emerging Environmental Catalysts, Chem. Rec., 19, 462, 10.1002/tcr.201800055 Shiota, 2000, Methane-to-Methanol Conversion by First-Row Transition-Metal Oxide Ions: ScO +, TiO +, VO +, CrO +, MnO +, FeO +, CoO +, NiO +, and CuO +, J Am Chem Soc., 122, 12317, 10.1021/ja0017965 Concepción, 2017, Enhanced Stability of Cu Clusters of Low Atomicity against Oxidation, Effect on the Catalytic Redox Process, Acs Catal., 7, 3560 Sonobe, 2021, Low-Temperature H 2 Reduction of Copper Oxide Subnanoparticles, Chem. Eur. J., 27, 8452, 10.1002/chem.202100508 Wu, 2020, Platinum-Group-Metal High-Entropy-Alloy Nanoparticles, J Am Chem Soc., 142, 13833, 10.1021/jacs.0c04807 Mori, 2021, Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Commun., 12, 3884, 10.1038/s41467-021-24228-z Swarnkar, 2016, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science., 354, 92, 10.1126/science.aag2700 Song, 2015, Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567 Liu, 2017, Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield, Acs Nano., 11, 10373, 10.1021/acsnano.7b05442 Shichibu, 2010, HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to “Magic-Number” Au13 Clusters, Small., 6, 1216, 10.1002/smll.200902398 Kamei, 2011, Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: octanuclear clusters with edge-sharing gold tetrahedron motifs, Angew. Chem. Int. Ed., 50, 7442, 10.1002/anie.201102901 Sugiuchi, 2017, Aggregation-Induced Fluorescence-to-Phosphorescence Switching of Molecular Gold Clusters, J Am Chem Soc., 139, 17731, 10.1021/jacs.7b10201 Sugiuchi, 2015, Cluster–π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands, Chem Commun., 51, 13519, 10.1039/C5CC04312C Shen, 2020, Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity, Nano Res., 13, 1908, 10.1007/s12274-020-2685-0 Chang, 2020, Highly Fluorescent Gold Cluster Assembly, J Am Chem Soc., 143, 326, 10.1021/jacs.0c10907 Lei, 2017, Intensely luminescent gold(i) phosphinopyridyl clusters: visualization of unsupported aurophilic interactions in solution, Chem Commun., 53, 10902, 10.1039/C7CC06944H Ruck, 2001, From the Metal to the Molecule—Ternary Bismuth Subhalides, Angewandte Chemie Int Ed., 40, 1182, 10.1002/1521-3773(20010401)40:7<1182::AID-ANIE1182>3.0.CO;2-B Ahmed, 2009, Room-Temperature Synthesis of Bismuth Clusters in Ionic Liquids and Crystal Growth of Bi 5 (AlCl 4) 3, Z. Anorg. Allg. Chem., 635, 297, 10.1002/zaac.200800302 Kuznetsov, 2001, Ab Initio Calculations on Bismuth Cluster Polycations, Chem. Eur. J., 7, 2821, 10.1002/1521-3765(20010702)7:13<2821::AID-CHEM2821>3.0.CO;2-Y Ulvenlund, 1996, Structural and Quantum Chemical Study of Bi 5 3+ and Isoelectronic Main-Group Metal Clusters. The Crystal Structure of Pentabismuth(3+) Tetrachlorogallate(III) Refined from X-ray Powder Diffraction Data and Synthetic Attempts on Its Antimony Analogue, Inorg Chem., 35, 223, 10.1021/ic9413981 Xu, 2000, A Naked Diatomic Molecule of Bismuth, [Bi 2 ] 2-, with a Short Bi−Bi Bond: Synthesis and Structure, J Am Chem Soc., 122, 1838, 10.1021/ja992422i Gascoin, 2000, Synthesis and Characterization of A 3 Bi 2 (A = K, Rb, Cs) with Isolated Diatomic Dianion of Bismuth, [Bi 2 ] 2 -, and an Extra Delocalized Electron, J Am Chem Soc., 122, 10251, 10.1021/ja002606t Dai, 2005, Analysis of the Effect of Spin−Orbit Coupling on the Electronic Structure and Excitation Spectrum of the Bi 2 2- Anion in (K-crypt) 2 Bi 2 on the Basis of Relativistic Electronic Structure Calculations, J Phys Chem., 109, 1675, 10.1021/jp044675q Sun, 2011, Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal, J Mater Chem., 21, 4060, 10.1039/c1jm10164a Sun, 2012, Experimental and theoretical studies of photoluminescence from Bi82+ and Bi53+ stabilized by [AlCl4]− in molecular crystals, J Mater Chem., 22, 12837, 10.1039/c2jm30251a Sun, 2012, Photoluminescence from Bi 5 (GaCl 4) 3 molecular crystal, Dalton Trans., 41, 11055, 10.1039/c2dt31167d Krebs, 1982, Structure of the Octabismuth(2+) Cluster in Crystalline Bi8(AlCl4)2, Angew. Chem. Int. Ed. Engl., 21, 445, 10.1002/anie.198204452 N.J. Bjerrum, G.P. Smith, Lower oxidation states of bismuth. Bi82+ formed in aluminum chloride-sodium chloride melts, Inorg Chem. 6 (1967) 1968–1972. 10.1021/ic50057a005. Sun, 2014, Recent advances in bismuth activated photonic materials, Prog Mater Sci., 64, 1, 10.1016/j.pmatsci.2014.02.002 Hyeon, 2002, Chemical synthesis of magnetic nanoparticles, Chem Commun., 927 Hao, 2010, Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles, Adv Mater., 22, 2729, 10.1002/adma.201000260 Wu, 2016, Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications, Chem Rev., 116, 10473, 10.1021/acs.chemrev.5b00687 Leslie-Pelecky, 1996, Magnetic Properties of Nanostructured Materials, Chem Mater., 8, 1770, 10.1021/cm960077f Kim, 2009, Synthesis of uniform ferrimagnetic magnetite nanocubes, J Am Chem Soc., 131, 454, 10.1021/ja8086906 Cooper, 2018, Insights into the Magnetic Properties of Sub-10 nm Iron Oxide Nanocrystals through the Use of a Continuous Growth Synthesis, Chem Mater., 30, 6053, 10.1021/acs.chemmater.8b02389 Laurent, 2008, Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem Rev., 108, 2064, 10.1021/cr068445e Ling, 2015, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Acc. Chem. Res., 48, 1276, 10.1021/acs.accounts.5b00038 Ling, 2019, Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles, J Mater Res., 34, 1828, 10.1557/jmr.2019.129 Massart, 1981, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn., 17, 1247, 10.1109/TMAG.1981.1061188 Shokrollahi, 2017, A review of the magnetic properties, synthesis methods and applications of maghemite, J Magn Magn Mater., 426, 74, 10.1016/j.jmmm.2016.11.033 Park, 2004, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat Mater., 3, 891, 10.1038/nmat1251 Yun, 2014, Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals, Acs Nano., 8, 12323, 10.1021/nn504711g Kamali, 2019, Size-dependent magnetic properties of γ-Fe2O3 nanocrystallites, J Phys Condens Matter Inst Phys J., 32 Ida, 2020, A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition, Rsc Adv., 10, 41523, 10.1039/D0RA07443H Hinokuma, 2015, Nanoparticle catalyst preparation using pulsed arc plasma deposition, Catal, Sci. Technol., 5, 4249 Kim, 2017, Non-Colloidal Nanocatalysts Fabricated Using Arc Plasma Deposition and Their Application in Heterogenous Catalysis and Photocatalysis, Top Catal., 60, 812, 10.1007/s11244-017-0746-8 Morales, 1999, Surface and Internal Spin Canting in γ-Fe 2 O 3 Nanoparticles, Chem Mater., 11, 3058, 10.1021/cm991018f Shen, 2018, Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets, Angew. Chem. Int. Ed., 58, 602, 10.1002/anie.201812007 Shen, 2019, Chemical Synthesis of Magnetic Nanoparticles for Permanent Magnet Applications, Chem. Eur. J., 26, 6757, 10.1002/chem.201902916 Sun, 2006, Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles, Adv Mater., 18, 393, 10.1002/adma.200501464 Häkkinen, 2008, Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts, Chem. Soc. Rev., 37, 1847, 10.1039/b717686b M. Walter, M. Moseler, R.L. Whetten, H. Häkkinen, A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension, Chemical Science. 2 (2011) 1583. 10.1039/c1sc00060h. Negishi, 2007, Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18, J. Am. Chem. Soc., 129, 11322, 10.1021/ja073580+ Takano, 2021, Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges, J Am Chem Soc., 143, 1683, 10.1021/jacs.0c11465 Kambe, 2017, Solution-phase synthesis of Al13− using a dendrimer template, Nature Commun., 8, 2046, 10.1038/s41467-017-02250-4 Kambe, 2021, Functionalization of phenylazomethine dendrimers, Polym J., 1 Jr, 2009, Clusters, Superatoms, and Building Blocks of New Materials, J. Phys. Chem. C., 113, 2664, 10.1021/jp806850h Reber, 2017, Superatoms: Electronic and Geometric Effects on Reactivity, Acc. Chem. Res., 50, 255, 10.1021/acs.accounts.6b00464 Bergeron, 2005, Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts, Science., 307, 231, 10.1126/science.1105820 Luo, 2013, Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen, J Am Chem Soc., 135, 4307, 10.1021/ja310467n Jones, 2008, Al n Bi Clusters: Transitions Between Aromatic and Jellium Stability, J Phys Chem., 112, 13316, 10.1021/jp804667d Melko, 2010, Combined experimental and theoretical study of Al(n)X (n = 1–6; X = As, Sb) clusters: evidence of aromaticity and the Jellium model, J Phys Chem., 114, 2045, 10.1021/jp908406h Tsunoyama, 2017, Development of Integrated Dry-Wet Synthesis Method for Metal Encapsulating Silicon Cage Superatoms of M@Si16 (M = Ti and Ta), J Phys Chem C., 121, 20507, 10.1021/acs.jpcc.7b06449 Nakajima, 1991, Electronic and geometric structures of aluminum-boron negative cluster ions (AlnB−m), Chem Phys Lett., 187, 239, 10.1016/0009-2614(91)90419-A Akutsu, 2006, Experimental and Theoretical Characterization of Aluminum-Based Binary Superatoms of Al 12 X and Their Cluster Salts, J Phys Chem., 110, 12073, 10.1021/jp065161p Akutsu, 2017, Geometric and electronic properties of Si-atom doped Al clusters: robustness of binary superatoms against charging, Phys Chem Chem Phys., 19, 20401, 10.1039/C7CP03409A Ruck, 2003, Structure and Bonding of Pd@[Bi10]4 in the Subbromide Bi14PdBr 16, Angew. Chem. Int. Ed., 42, 2978, 10.1002/anie.200250801 Eulenstein, 2020, Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4, Nat Chem., 13, 149, 10.1038/s41557-020-00592-z Tomalia, 2016, A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables, Chem. Rev., 116, 2705, 10.1021/acs.chemrev.5b00367 Richmond, 2012, A flow-system array for the discovery and scale up of inorganic clusters, Nature Chem., 4, 1037, 10.1038/nchem.1489 Kokabi, 2021, Linear and nonlinear machine learning correlation of transition metal cluster characteristics, J Nanopart Res., 23, 157, 10.1007/s11051-021-05267-5 Keith, 2021, Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems, Chem Rev., 121, 9816, 10.1021/acs.chemrev.1c00107 Ishikawa, 2018, Direct electric field imaging of graphene defects, Nat Commun., 9, 3878, 10.1038/s41467-018-06387-8 Gao, 2017, Electron ptychographic microscopy for three-dimensional imaging, Nat Commun., 8, 163, 10.1038/s41467-017-00150-1 Hamaoka, 2018, 4D-Data Acquisition in Scanning Confocal Electron Microscopy for Depth-Sectioned Imaging, E-Journal Surf. Sci. Nanotechnol., 16, 247, 10.1380/ejssnt.2018.247 Chen, 2021, Electron ptychography achieves atomic-resolution limits set by lattice vibrations, Science., 372, 826, 10.1126/science.abg2533 Jiang, 2018, Electron ptychography of 2D materials to deep sub-ångström resolution, Nature., 559, 343, 10.1038/s41586-018-0298-5 Ophus, 2019, Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond, Microsc Microanal., 25, 563, 10.1017/S1431927619000497 Creange, 2021, Towards Automating Structural Discovery in Scanning Transmission Electron Microscopy, Mach. Learn. Sci. Technol.