Atmospheric water-vapor signals in GPS data: synergies, correlations, signals and errors

J.L. Davis1
1Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., USA

Tài liệu tham khảo

Armstrong, 1982, Observations of tropospheric phase scintillations at 5 GHz on vertical paths, Radio Science, 17, 1579, 10.1029/RS017i006p01579 Davis, 1986, Atmospheric Propagation Effects on Radio Interferometry, 284 Davis, 2001, Understanding signals and errors in GPS parameter estimates, Proc. Tenth General Assembly of the Wegener Project Davis, 1998, The spatio-temporal structure of GPS water-vapor determinations, Phys. Chem. Earth, 23, 91, 10.1016/S0079-1946(97)00248-6 Davis, 2001, Whole-error method for assessing the accuracy of velocity determinations for the Basin and Range Geodetic Network (BARGEN), J. Geophys. Res Elgered, 1997, Measuring regional atmospheric water vapor using GPS, Geophys. Res. Lett, 24, 2663, 10.1029/97GL02798 Elósegui, 1995, Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position, J. Geophys. Res, 100, 9921, 10.1029/95JB00868 Hogg, 1981, The short-term temporal spectrum of precipitable water vapor, Science, 213, 1112, 10.1126/science.213.4512.1112 Jarlemark, 1997, Characterization of temporal variations in atmospheric water vapor, IEEE Trans. Geosci. Remote Sens Johansson, 2001, Continuous GPS measurements of postglacial adjustment in Fennoscandia, 1. Geodetic results, J. Geophys. Res Tatarskii, 1961 Treuhaft, 1987, The effect of the dynamic wet troposphere on radio interferometric measurements, Radio Sci, 22, 251, 10.1029/RS022i002p00251 Zhang, 1997, Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities, J. Geophys Res, 102, 18035, 10.1029/97JB01380