Hóa học lắng đọng khí quyển tại một khu vực nông thôn ở Brasil: Hành vi của các loài kiềm và đầu vào từ nông nghiệp

Springer Science and Business Media LLC - Tập 28 - Trang 23448-23458 - 2021
Jaqueline Natiele Pereira1, Adalgiza Fornaro2, Marcelo Vieira-Filho1
1Departamento de Engenharia Ambiental (DAM), Universidade Federal de Lavras (UFLA), Lavras, Brazil
2Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências (IAG), Atmosféricas da Universidade de São Paulo (USP), São Paulo, Brazil

Tóm tắt

Kể từ những năm 2000, một số nghiên cứu đã báo cáo sự gia tăng các loài kiềm trong lắng đọng khí quyển trên toàn thế giới. Nghiên cứu này nhằm đánh giá và cung cấp sự hiểu biết sâu sắc hơn về hóa học lắng đọng khí quyển được thu thập tại Lavras, một thành phố của Brasil với nền nông thôn. Các mẫu lắng đọng khí quyển tổng thể đã được thu thập từ tháng 3 năm 2018 đến tháng 2 năm 2019 và các loài ion chính đã được định lượng. Giá trị pH dao động từ 5.52 đến 8.29, với trung bình là 5.92 và hầu hết các mẫu lắng đọng (~ 94%) có tính kiềm (pH > 5.60). Trong toàn bộ chiến dịch lấy mẫu, hồ sơ ion theo trung bình trọng số thể tích (VWM) được mô tả như sau: Ca2+ (35.02) > NH4+ (11.26) > Cl− (11.19) > Mg2+ (9.04) > NO3− (8.57) > Na+ (5.65) > K+ (2.61) > SO42− (2.43) > H+ (0.94) μmol L−1. Chúng tôi đã xác định Ca2+ và NH4+ là các loài chiếm ưu thế nhất, chiếm khoảng 53% tổng phân bố các loài ion. Hơn nữa, tất cả các mẫu đều cho thấy chỉ số yếu tố trung hòa (NF) lớn hơn 1, với giá trị trung bình là 6.4. Về phân tích hồi quy, các nguyên tố làm trung hòa độ axit như canxi và amoniac lần lượt chiếm 50% và 4%. Ngoài ra, mẫu dạng kiềm chủ yếu xuất phát từ các nguồn nông nghiệp, bao gồm sản xuất và áp dụng phân bón, cũng như sản xuất xi măng trong khu vực không khí của quận.

Từ khóa


Tài liệu tham khảo

Akpo AB, Galy-Lacaux C, Laouali D et al (2015) Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin). Atmos Environ 115:110–123. https://doi.org/10.1016/j.atmosenv.2015.04.064 Almeida GLMD, Ferreira EC da M, Mendes DJ da Souza, et al (2017) Estudo sobre as regiões de planejamento de Minas Gerais: Sul de Minas Gerais. Belo Horizonte Alves DD, Backes E, Rocha-Uriartt L et al (2018) Chemical composition of rainwater in the Sinos River Basin, Southern Brazil: a source apportionment study. Environ Sci Pollut Res 25:24150–24161. https://doi.org/10.1007/s11356-018-2505-1 Araujo TG, Souza MFL, De Mello WZ, Da Silva DML (2015) bulk atmospheric deposition of major ions and dissolved organic nitrogen in the lower course of a tropical river basin, Southern Bahia, Brazil. J Braz Chem Soc 26:1692–1701. https://doi.org/10.5935/0103-5053.20150143 Avila A, Alarco M (1999) Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain. Atmos Environ 33:1663–1677. https://doi.org/10.1016/s1352-2310(98)00341-0 Carslaw DC, Ropkins K (2012) openair---an R package for air quality data analysis. Environ Model Softw 27--28:52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 Carvalho VSB, Freitas ED, Martins LD et al (2015) Air quality status and trends over the metropolitan area of São Paulo, Brazil as a result of emission control policies. Environ Sci Pol 47:68–79. https://doi.org/10.1016/j.envsci.2014.11.001 Celle-Jeanton H, Travi Y, Loÿe-Pilot MD et al (2009) Rainwater chemistry at a Mediterranean inland station (Avignon, France): local contribution versus long-range supply. Atmos Res 91:118–126. https://doi.org/10.1016/j.atmosres.2008.06.003 Cheng N, Cheng B, Li S, Ning T (2019) Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons. Atmos Pollut Res 10:971–979. https://doi.org/10.1016/j.apr.2019.01.005 Clarke N, Žlindra D, Ulrich E et al (2016) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests-part XIV. Eberswalde, Germany Da Conceição FT, Sardinha D de S, Navarro GRB et al (2011) Composição química das águas pluviais e deposição atmosférica anual na bacia do alto sorocaba (SP). Quim Nova 34:610–616. https://doi.org/10.1590/S0100-40422011000400011 De Mello WZ, De Almeida MD (2004) Rainwater chemistry at the summit and southern flank of the Itatiaia massif, Southeastern Brazil. Environ Pollut 129:63–68. https://doi.org/10.1016/j.envpol.2003.09.026 De Souza PA, De Mello WZ, Da Silva JJN et al (2017) Deposições Atmosféricas Úmida, Seca e Total de Nitrogênio Inorgânico Dissolvido no Estado do Rio de Janeiro de. Rev Virtual Quim 9:2052–2066. https://doi.org/10.21577/1984-6835.20170122 De Souza PA, De Mello WZ, Maldonado J, Evangelista H (2006) Composição química da chuva e aporte atmosférico na Ilha Grande, RJ. Quim Nova 29:471–476. https://doi.org/10.1590/S0100-40422006000300013 DENATRAN (2018) Frota de Veículos - 2018. In: Ministério da Infraestrutura. https://infraestrutura.gov.br/component/content/article/115-portal-denatran/8558-frota-de-veiculos-2018.html. Accessed 1 Jun 2019 Deusdará KRL, Forti MC, Borma LS et al (2017) Rainwater chemistry and bulk atmospheric deposition in a tropical semiarid ecosystem: the Brazilian Caatinga. J Atmos Chem 74:71–85. https://doi.org/10.1007/s10874-016-9341-9 Duan L, Chen X, Ma X et al (2016) Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: implications for soil acidification. Environ Pollut 218:1191–1199. https://doi.org/10.1016/j.envpol.2016.08.075 Fornaro A (1991) Chuva ácida em São Paulo: caracterização química de amostras integradas e sequenciais de deposição úmida. Universidade de São Paulo, São Paulo Fornaro A, Gutz IGR (2006) Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: part 3. Trends in precipitation chemistry during 1983–2003. Atmos Environ 40:5893–5901. https://doi.org/10.1016/j.atmosenv.2005.12.007 Gomes MAF, Souza MD, Boeira RC, Toledo LG (2008) Nutrientes vegetais no meio ambiente: ciclos bioquímicos, fertilizantes e corretivos, 2nd edn. Ministério da Agricultura, Pecuária e Abastecimento, Jaguariúna Granat L (1972) On the relation between pH and the chemical composition in atmospheric precipitation. Tellus Ser B Chem Phys Meteorol 24:550–560. https://doi.org/10.3402/tellusa.v24i6.10682 Grosjean E, Rasmussen RA, Grosjean D (1999) Toxic air contaminants in Porto Alegre, Brazil. Environ Sci Technol 33:1970–1978. https://doi.org/10.1021/es980578x Herrera J, Rodríguez S, Baéz AP (2009) Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America. Atmos Res 94:151–160. https://doi.org/10.1016/j.atmosres.2009.05.004 Huang DY, Xu YG, Peng P et al (2009) Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities. Environ Pollut 157:35–41. https://doi.org/10.1016/j.envpol.2008.08.001 IBGE (2018) Cidades e Estados: Lavras. https://cidades.ibge.gov.br/brasil/mg/lavras. Accessed 1 Jun 2019 IEMA (2014) 1o Diagnóstico da rede de monitoramento da qualidade do ar no Brasil. Cariacica - Espírito Santo INMET (2019a) Normais Climatológicas do Brasil. In: Ministério da Agric. Pecuária e Abast. http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas. Accessed 15 Sep 2019 INMET (2019b) Banco de Dados Meteorológicos para Ensino e Pesquisa. In: Ministério da Agric. Pecuária e Abast. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed 2 May 2019 INPE (2019) Banco de Dados Meteorológicos. http://bancodedados.cptec.inpe.br/downloadBDM/. Accessed 15 Nov 2020 Lara LBLS, Artaxo P, Martinelli LA et al (2001) Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmos Environ 35:4937–4945. https://doi.org/10.1016/S1352-2310(01)00198-4 Leal TFM, Fontenele APG, Pedrotti JJ, Fornaro A (2004) Composição iônica majoritária de águas de chuva no centro da cidade de São Paulo. Quim Nova 27:855–861. https://doi.org/10.1590/s0100-40422004000600003 Lenzi E, Favero LOB (2009) Introdução à Química da Atmosfera - Ciência, Vida e Sobrevivência, LTC Losno R, Bergametti G, Carlier P, Mouvier G (1991) Major ions in marine rainwater with attention to sources of alkaline and acidic species. Atmos Environ Part A, Gen Top 25:763–770. https://doi.org/10.1016/0960-1686(91)90074-H Mahapatra PS, Sinha PR, Boopathy R et al (2018) Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: role of local meteorology and long-range transport. Atmos Res 199:145–158. https://doi.org/10.1016/j.atmosres.2017.09.001 Martins EH, Nogarotto DC, Mortatti J, Pozza SA (2019) Chemical composition of rainwater in an urban area of the southeast of Brazil. Atmos Pollut Res 10:520–530. https://doi.org/10.1016/j.apr.2018.10.003 Massambani O, Andrade F (1994) Seasonal behavior of tropospheric ozone in the Sao Paulo (Brazil) metropolitan area. Atmos Environ 28:3165–3169. https://doi.org/10.1016/1352-2310(94)00152-B Meng Y, Zhao Y, Li R et al (2019) Characterization of inorganic ions in rainwater in the megacity of Shanghai: spatiotemporal variations and source apportionment. Atmos Res 222:12–24. https://doi.org/10.1016/j.atmosres.2019.01.023 Migliavacca D, Teixeira EC, Wiegand F et al (2005) Atmospheric precipitation and chemical composition of an urban site, Guaíba hydrographic basin, Brazil. Atmos Environ 39:1829–1844. https://doi.org/10.1016/j.atmosenv.2004.12.005 Mimura AMS, Almeida JM, Vaz FAS et al (2016) Chemical composition monitoring of tropical rainwater during an atypical dry year. Atmos Res 169:391–399. https://doi.org/10.1016/j.atmosres.2015.11.001 Mo Z, Fu Q, Zhang L, et al (2018) Acute effects of air pollution on respiratory disease mortalities and outpatients in Southeastern China. Springer US Niu H, He Y, Zhu G et al (2013) Environmental implications of the snow chemistry from Mt. Yulong, southeastern Tibetan Plateau. Quat Int 313–314:168–178. https://doi.org/10.1016/j.quaint.2012.11.019 Niu Y, Li X, Pu J, Huang Z (2018) Organic acids contribute to rainwater acidity at a rural site in eastern China. Air Qual Atmos Health 11:459–469. https://doi.org/10.1007/s11869-018-0553-9 Nogueira FAA (1998) A Cultura do Café no Sul de Minas Gerais. Universidade Federal de Santa Catarina Pleijel H, Grundstrom M, Karlsson GP et al (2016) A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing. Atmos Environ 126:200–210. https://doi.org/10.1016/j.atmosenv.2015.11.053 Prathibha P, Kothai P, Saradhi IV et al (2010) Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environ Monit Assess 168:45–53. https://doi.org/10.1007/s10661-009-1090-7 Pye HOT, Nenes A, Alexander B et al (2019) The acidity of atmospheric particles and clouds. Atmos Chem Phys. https://doi.org/10.5194/acp-2019-889 Qiao X, Xiao W, Jaffe D et al (2015) Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China. Sci Total Environ 511:28–36. https://doi.org/10.1016/j.scitotenv.2014.12.028 R Core Team (2019) R: a language and environment for statistical computing Schaug J, Semb A, Hjellbrekke A-G et al (1997) Data quality and quality assurance report. Kjeller, Norway Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. John Wiley & Sons, Inc., Hoboken Singh SP, Khare P, Satsangi GS et al (2001) Rainwater composition at a regional representative site of a semi-arid region of India. Water Air Soil Pollut 127:93–108. https://doi.org/10.1023/A:1005295215338 Sun X, Wang Y, Li H et al (2016) Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China. Environ Sci Pollut Res 23:9529–9539. https://doi.org/10.1007/s11356-016-6038-1 Szép R, Mateescu E, Nechifor AC, Keresztesi Á (2017) Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians “Cold Pole,” Ciuc basin, Eastern Carpathians, Romania. Environ Sci Pollut Res 24:27288–27302. https://doi.org/10.1007/s11356-017-0318-2 Ti C, Gao B, Luo Y et al (2018) Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China. Atmos Environ 190:1–9. https://doi.org/10.1016/j.atmosenv.2018.07.017 Tositti L, Pieri L, Brattich E et al (2018) Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). J Atmos Chem 75:97–121. https://doi.org/10.1007/s10874-017-9365-9 Vet R, Artz RS, Carou S et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100. https://doi.org/10.1016/j.atmosenv.2013.10.060 Vieira-Filho M, Lehmann C, Fornaro A (2015) Influence of local sources and topography on air quality and rainwater composition in Cubatão and São Paulo, Brazil. Atmos Environ 101:200–208. https://doi.org/10.1016/j.atmosenv.2014.11.025 Vieira-Filho M, Pedrotti JJ, Fornaro A (2016) Water-soluble ions species of size-resolved aerosols: implications for the atmospheric acidity in São Paulo megacity, Brazil. Atmos Res 181:281–287. https://doi.org/10.1016/j.atmosres.2016.07.006 Wickham H (2016) ggplot2: elegant graphics for data analysis WMO (2004) Manual for the Gaw Precipitation Chemistry Programme: guidelines, data quality objectives and standard operating procedures Xiao J (2016) Chemical composition and source identification of rainwater constituents at an urban site in Xi’an. Environ Earth Sci 75:1–12. https://doi.org/10.1007/s12665-015-4997-z Xing J, Song J, Yuan H et al (2017) Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci Total Environ 576:617–627. https://doi.org/10.1016/j.scitotenv.2016.10.134 Xu H, Bi XH, Feng YC et al (2011) Chemical composition of precipitation and its sources in Hangzhou, China. Environ Monit Assess 183:581–592. https://doi.org/10.1007/s10661-011-1963-4 Yatkin S, Adali M, Bayram A (2016) A study on the precipitation in Izmir, Turkey: chemical composition and source apportionment by receptor models. J Atmos Chem 73:241–259. https://doi.org/10.1007/s10874-015-9325-1 Zeng J, Han G, Wu Q, Tang Y (2020) Effects of agricultural alkaline substances on reducing the rainwater acidification: insight from chemical compositions and calcium isotopes in a karst forests area. Agric Ecosyst Environ 290:106782. https://doi.org/10.1016/j.agee.2019.106782 Zhan X, Bo Y, Zhou F et al (2017) Evidence for the importance of atmospheric nitrogen deposition to Eutrophic Lake Dianchi, China. Environ Sci Technol 51:6699–6708. https://doi.org/10.1021/acs.est.6b06135 Zhang M, Wang S, Wu F et al (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84:311–322. https://doi.org/10.1016/j.atmosres.2006.09.003 Zhang Y, Ding A, Mao H et al (2016) Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmos Environ 124:119–128. https://doi.org/10.1016/J.ATMOSENV.2015.05.063 Zhao M, Li L, Liu Z et al (2013) Chemical Composition and sources of rainwater collected at a semi-rural site in Ya’an, Southwestern China. Atmos Clim Sci 03:486–496. https://doi.org/10.4236/acs.2013.34051 Zhou X, Xu Z, Liu W et al (2019) Chemical composition of precipitation in Shenzhen, a coastal mega-city in South China: influence of urbanization and anthropogenic activities on acidity and ionic composition. Sci Total Environ 662:218–226. https://doi.org/10.1016/j.scitotenv.2019.01.096