Atherosclerosis – A matter of unresolved inflammation
Tài liệu tham khảo
Boren, 1998, Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding, J. Clin. Investig., 101, 2658, 10.1172/JCI2265
Kwon, 2008, Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points, Circulation, 117, 2919, 10.1161/CIRCULATIONAHA.107.754614
Salvayre, 2002, Oxidized low-density lipoprotein-induced apoptosis, Biochim. Biophys. Acta, 1585, 213, 10.1016/S1388-1981(02)00343-8
Liu, 2005, Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice, Arterioscler. Thromb. Vasc. Biol., 25, 174, 10.1161/01.ATV.0000148548.47755.22
van Vlijmen, 2001, Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice, Circ. Res., 88, 780, 10.1161/hh0801.089261
Ortega-Gomez, 2013, Resolution of inflammation: an integrated view, EMBO Mol. Med., 5, 661, 10.1002/emmm.201202382
Soehnlein, 2013, Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes, EMBO Mol. Med., 5, 471, 10.1002/emmm.201201717
Ylitalo, 1994, Effects of clodronate (dichloromethylene bisphosphonate) on the development of experimental atherosclerosis in rabbits, J. Lab. Clin. Med., 123, 769
Stoneman, 2007, Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques, Circ. Res., 100, 884, 10.1161/01.RES.0000260802.75766.00
Potteaux, 2011, Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression, J. Clin. Investig., 121, 2025, 10.1172/JCI43802
Drechsler, 2010, Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis, Circulation, 122, 1837, 10.1161/CIRCULATIONAHA.110.961714
Soehnlein, 2012, Multiple roles for neutrophils in atherosclerosis, Circ. Res., 110, 875, 10.1161/CIRCRESAHA.111.257535
Swirski, 2006, Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease, Proc. Natl. Acad. Sci. U.S.A., 103, 10340, 10.1073/pnas.0604260103
Tacke, 2007, Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, J. Clin. Investig., 117, 185, 10.1172/JCI28549
Landsman, 2009, CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival, Blood, 113, 963, 10.1182/blood-2008-07-170787
Robbins, 2013, Local proliferation dominates lesional macrophage accumulation in atherosclerosis, Nat. Med., 19, 1166, 10.1038/nm.3258
Zhu, 2009, GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions, J. Exp. Med., 206, 2141, 10.1084/jem.20090866
Randolph, 2008, Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis, Curr. Opin. Lipidol., 19, 462, 10.1097/MOL.0b013e32830d5f09
Assinger, 2014, Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses, Thromb. Haemost., 112, 332, 10.1160/TH13-12-1026
von Hundelshausen, 2001, RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium, Circulation, 103, 1772, 10.1161/01.CIR.103.13.1772
Badrnya, 2014, Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation, Arterioscler. Thromb. Vasc. Biol., 34, 571, 10.1161/ATVBAHA.113.302919
Siegel-Axel, 2008, Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis, Cardiovasc. Res., 78, 8, 10.1093/cvr/cvn015
Huo, 2003, Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E, Nat. Med., 9, 61, 10.1038/nm810
Massberg, 2002, A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation, J. Exp. Med., 196, 887, 10.1084/jem.20012044
Burger, 2003, Platelet P-selectin facilitates atherosclerotic lesion development, Blood, 101, 2661, 10.1182/blood-2002-07-2209
Postea, 2012, Contribution of platelet CX(3)CR1 to platelet-monocyte complex formation and vascular recruitment during hyperlipidemia, Arterioscler. Thromb. Vasc. Biol., 32, 1186, 10.1161/ATVBAHA.111.243485
Badrnya, 2012, Platelets directly enhance neutrophil transmigration in response to oxidised low-density lipoprotein, Thromb. Haemost., 108, 719, 10.1160/TH12-03-0206
Lam, 2011, Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1, Am. J. Physiol. Heart Circ. Physiol., 300, H468, 10.1152/ajpheart.00491.2010
Tsimikas, 2005, Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease, N. Engl. J. Med., 353, 46, 10.1056/NEJMoa043175
Ravandi, 2014, Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans, J. Am. Coll. Cardiol., 63, 1961, 10.1016/j.jacc.2014.01.055
Jeney, 2014, Red blood cell, hemoglobin and heme in the progression of atherosclerosis, Front. Physiol., 5, 379, 10.3389/fphys.2014.00379
Kockx, 2003, Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 23, 440, 10.1161/01.ATV.0000057807.28754.7F
Kolodgie, 2003, Intraplaque hemorrhage and progression of coronary atheroma, N. Engl. J. Med., 349, 2316, 10.1056/NEJMoa035655
Lusis, 2000, Atherosclerosis, Nature, 407, 233, 10.1038/35025203
Hagberg, 1998, Adhesion of leukocytes to growing arterial thrombi, Thromb. Haemost., 80, 852, 10.1055/s-0037-1615370
Kirchhofer, 1997, Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model, Blood, 89, 1270, 10.1182/blood.V89.4.1270
Ghasemzadeh, 2013, The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi, Blood, 121, 4555, 10.1182/blood-2012-09-459636
Coffey, 2000, Prolonged exposure to lipopolysaccharide inhibits macrophage 5-lipoxygenase metabolism via induction of nitric oxide synthesis, J. Immunol., 165, 3592, 10.4049/jimmunol.165.7.3592
Lee, 1999, Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors, Am. J. Respir. Crit. Care Med., 160, 2079, 10.1164/ajrccm.160.6.9903136
Ott, 2003, Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4, Nat. Immunol., 4, 974, 10.1038/ni971
Samuelsson, 1983, Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation, Science, 220, 568, 10.1126/science.6301011
Yokomizo, 1997, A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis, Nature, 387, 620, 10.1038/42506
Matsukawa, 1999, Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4, J. Immunol., 163, 6148, 10.4049/jimmunol.163.11.6148
Subbarao, 2004, Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms, Arterioscler. Thromb. Vasc. Biol., 24, 369, 10.1161/01.ATV.0000110503.16605.15
Huang, 2004, Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes, Arterioscler. Thromb. Vasc. Biol., 24, 1783, 10.1161/01.ATV.0000140063.06341.09
Mehrabian, 2002, Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice, Circ. Res., 91, 120, 10.1161/01.RES.0000028008.99774.7F
Qiu, 2006, Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability, Proc. Natl. Acad. Sci. U.S.A., 103, 8161, 10.1073/pnas.0602414103
Spanbroek, 2003, Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis, Proc. Natl. Acad. Sci. U.S.A., 100, 1238, 10.1073/pnas.242716099
Toda, 1999, Cloning and characterization of rat leukotriene B(4) receptor, Biochem. Biophys. Res. Commun., 262, 806, 10.1006/bbrc.1999.1284
Assimes, 2008, A near null variant of 12/15-LOX encoded by a novel SNP in ALOX15 and the risk of coronary artery disease, Atherosclerosis, 198, 136, 10.1016/j.atherosclerosis.2007.09.003
Wittwer, 2007, The c.-292C>T promoter polymorphism increases reticulocyte-type 15-lipoxygenase-1 activity and could be atheroprotective, Clin. Chem. Lab. Med.: CCLM/FESCC, 45, 487, 10.1515/CCLM.2007.103
Merched, 2008, Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators, FASEB J.: Off. Publ. Feder. Am. Soc. Exp. Biol., 22, 3595, 10.1096/fj.08-112201
Hajishengallis, 2013, Endogenous modulators of inflammatory cell recruitment, Trends Immunol., 34, 1, 10.1016/j.it.2012.08.003
Deban, 2010, Regulation of leukocyte recruitment by the long pentraxin PTX3, Nat. Immunol., 11, 328, 10.1038/ni.1854
Choi, 2008, Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment, Science, 322, 1101, 10.1126/science.1165218
Cooper, 2008, Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow, J. Leukoc. Biol., 83, 1459, 10.1189/jlb.1207831
La, 2003, A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation, Am. J. Pathol., 163, 1505, 10.1016/S0002-9440(10)63507-9
Kempf, 2011, GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice, Nat. Med., 17, 581, 10.1038/nm.2354
Norata, 2009, Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis, Circulation, 120, 699, 10.1161/CIRCULATIONAHA.108.806547
Savchenko, 2008, Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions, J. Pathol., 215, 48, 10.1002/path.2314
Preusch, 2013, GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis, Eur. J. Med. Res., 18, 19, 10.1186/2047-783X-18-19
Bonaterra, 2012, Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury, J. Am. Heart Assoc., 1, e002550, 10.1161/JAHA.112.002550
de Jager, 2011, Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis, J. Exp. Med., 208, 217, 10.1084/jem.20100370
Johnen, 2012, Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE(−/−) mice from the development of atherosclerosis, Cardiovasc. Pathol.: Off. J. Soc. Cardiovasc. Pathol., 21, 499, 10.1016/j.carpath.2012.02.003
Drechsler, 2015, Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment, Circ. Res., 116, 827, 10.1161/CIRCRESAHA.116.305825
Rosenfeld, 2014, Macrophage proliferation in atherosclerosis: an historical perspective, Arterioscler. Thromb. Vasc. Biol., 34, e21, 10.1161/ATVBAHA.114.303379
Fuster, 2010, Control of cell proliferation in atherosclerosis: insights from animal models and human studies, Cardiovasc. Res., 86, 254, 10.1093/cvr/cvp363
Sayin, 2014, Loss of one copy of Zfp148 reduces lesional macrophage proliferation and atherosclerosis in mice by activating p53, Circ. Res., 115, 781, 10.1161/CIRCRESAHA.115.304992
Wu, 2014, LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity, Circulation, 130, 1452, 10.1161/CIRCULATIONAHA.114.011675
Hashimoto, 2013, Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes, Immunity, 38, 792, 10.1016/j.immuni.2013.04.004
Jenkins, 2011, Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation, Science, 332, 1284, 10.1126/science.1204351
Gautier, 2009, Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage, Circulation, 119, 1795, 10.1161/CIRCULATIONAHA.108.806158
Sleiman, 2013, Loss of cellular inhibitor of apoptosis protein 2 reduces atherosclerosis in atherogenic apoE−/− C57BL/6 mice on high-fat diet, J. Am. Heart Assoc., 2, e000259, 10.1161/JAHA.113.000259
Hamada, 2014, MafB promotes atherosclerosis by inhibiting foam-cell apoptosis, Nat. Commun., 5, 3147, 10.1038/ncomms4147
Sallam, 2014, The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis, J. Lipid Res., 55, 1120, 10.1194/jlr.M047548
Bellingan, 1996, In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes, J. Immunol., 157, 2577, 10.4049/jimmunol.157.6.2577
Cao, 2005, A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics, Blood, 106, 3234, 10.1182/blood-2005-03-1288
Gomez, 2012, Metalloproteinase-mediated Shedding of Integrin beta2 promotes macrophage efflux from inflammatory sites, J. Biol. Chem., 287, 4581, 10.1074/jbc.M111.321182
Gautier, 2013, Local apoptosis mediates clearance of macrophages from resolving inflammation in mice, Blood, 122, 2714, 10.1182/blood-2013-01-478206
Llodra, 2004, Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques, Proc. Natl. Acad. Sci. U.S.A., 101, 11779, 10.1073/pnas.0403259101
Gerrity, 1981, The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions, Am. J. Pathol., 103, 191
Faggiotto, 1984, Studies of hypercholesterolemia in the nonhuman primate, I. Changes that lead to fatty streak formation, Arteriosclerosis, 4, 323, 10.1161/01.ATV.4.4.323
Feig, 2011, HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells, Proc. Natl. Acad. Sci. U.S.A., 108, 7166, 10.1073/pnas.1016086108
van Gils, 2012, The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques, Nat. Immunol., 13, 136, 10.1038/ni.2205
Feig, 2012, Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome, PLoS ONE, 7, e39790, 10.1371/journal.pone.0039790
Gleissner, 2010, CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages, J. Immunol., 184, 4810, 10.4049/jimmunol.0901368
Kadl, 2010, Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, Circ. Res., 107, 737, 10.1161/CIRCRESAHA.109.215715
Chinetti-Gbaguidi, 2015, Macrophage subsets in atherosclerosis, Nat. Rev. Cardiol., 12, 10, 10.1038/nrcardio.2014.173
Khallou-Laschet, 2010, Macrophage plasticity in experimental atherosclerosis, PLoS ONE, 5, e8852, 10.1371/journal.pone.0008852
Feig, 2011, Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques, Circulation, 123, 989, 10.1161/CIRCULATIONAHA.110.984146
Murray, 2011, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol., 11, 723, 10.1038/nri3073
Murray, 2011, Obstacles and opportunities for understanding macrophage polarization, J. Leukoc. Biol., 89, 557, 10.1189/jlb.0710409
Hirata, 2011, Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue, J. Am. Coll. Cardiol., 58, 248, 10.1016/j.jacc.2011.01.048
Fadini, 2014, Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis, Atherosclerosis, 237, 805, 10.1016/j.atherosclerosis.2014.10.106
Chinetti-Gbaguidi, 2011, Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways, Circ. Res., 108, 985, 10.1161/CIRCRESAHA.110.233775
Stoger, 2012, Distribution of macrophage polarization markers in human atherosclerosis, Atherosclerosis, 225, 461, 10.1016/j.atherosclerosis.2012.09.013
Lawrence, 2011, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nat. Rev. Immunol., 11, 750, 10.1038/nri3088
Schrijvers, 2005, Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 25, 1256, 10.1161/01.ATV.0000166517.18801.a7
Silvestre-Roig, 2014, Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies, Circ. Res., 114, 214, 10.1161/CIRCRESAHA.114.302355
Moore, 2011, Macrophages in the pathogenesis of atherosclerosis, Cell, 145, 341, 10.1016/j.cell.2011.04.005
Poon, 2014, Apoptotic cell clearance: basic biology and therapeutic potential, Nat. Rev. Immunol., 14, 166, 10.1038/nri3607
Ravichandran, 2011, Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways, Immunity, 35, 445, 10.1016/j.immuni.2011.09.004
Lauber, 2003, Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, Cell, 113, 717, 10.1016/S0092-8674(03)00422-7
Aprahamian, 2004, Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease, J. Exp. Med., 199, 1121, 10.1084/jem.20031557
Goncalves, 2012, Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation, Arterioscler. Thromb. Vasc. Biol., 32, 1505, 10.1161/ATVBAHA.112.249854
Nofer, 2007, FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice, Circulation, 115, 501, 10.1161/CIRCULATIONAHA.106.641407
Poti, 2013, KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R−/− mice, Arterioscler. Thromb. Vasc. Biol., 33, 1505, 10.1161/ATVBAHA.113.301347
Jaillon, 2009, Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages, Cell Death Differ., 16, 465, 10.1038/cdd.2008.173
Lewis, 2009, Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice, Circulation, 120, 417, 10.1161/CIRCULATIONAHA.109.868158
Moura, 2008, Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE−/− mice, Circ. Res., 103, 1181, 10.1161/CIRCRESAHA.108.185645
Ait-Oufella, 2007, Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice, Circulation, 115, 2168, 10.1161/CIRCULATIONAHA.106.662080
Deroide, 2013, MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury, J. Clin. Investig., 123, 1176, 10.1172/JCI65167
Ait-Oufella, 2008, Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 28, 1429, 10.1161/ATVBAHA.108.169078
Thorp, 2008, Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice, Arterioscler. Thromb. Vasc. Biol., 28, 1421, 10.1161/ATVBAHA.108.167197
Thorp, 2011, Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cdelta, and p38 mitogen-activated protein kinase (MAPK), J. Biol. Chem., 286, 33335, 10.1074/jbc.M111.263020
Sather, 2007, A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation, Blood, 109, 1026, 10.1182/blood-2006-05-021634
Driscoll, 2013, Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype, Circ. Res., 113, 52, 10.1161/CIRCRESAHA.112.300683
Boisvert, 2006, Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size, Arterioscler. Thromb. Vasc. Biol., 26, 563, 10.1161/01.ATV.0000203503.82693.c1
Kojima, 2014, Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis, J. Clin. Investig., 124, 1083, 10.1172/JCI70391
Gardai, 2005, Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte, Cell, 123, 321, 10.1016/j.cell.2005.08.032
Heo, 2014, ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis, Circulation, 130, 180, 10.1161/CIRCULATIONAHA.113.005991
Marsch, 2014, Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis, Arterioscler. Thromb. Vasc. Biol., 34, 2545, 10.1161/ATVBAHA.114.304023
Charo, 2011, Anti-inflammatory therapeutics for the treatment of atherosclerosis, Nat. Rev. Drug Discov., 10, 365, 10.1038/nrd3444
Horuk, 2009, Chemokine receptor antagonists: overcoming developmental hurdles, Nat. Rev. Drug Discov., 8, 23, 10.1038/nrd2734
Koenen, 2011, Chemokines: established and novel targets in atherosclerosis, EMBO Mol. Med., 3, 713, 10.1002/emmm.201100183
Libby, 2011, Progress and challenges in translating the biology of atherosclerosis, Nature, 473, 317, 10.1038/nature10146
Libby, 2014, Inflammation and its resolution as determinants of acute coronary syndromes, Circ. Res., 114, 1867, 10.1161/CIRCRESAHA.114.302699
Gobbetti, 2014, Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis, Proc. Natl. Acad. Sci. U.S.A., 111, 18685, 10.1073/pnas.1410938111
Spite, 2009, Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis, Nature, 461, 1287, 10.1038/nature08541
Mulder, 2014, Imaging and nanomedicine in inflammatory atherosclerosis, Sci. Transl. Med., 6, 239sr1, 10.1126/scitranslmed.3005101
Schiener, 2014, Nanomedicine-based strategies for treatment of atherosclerosis, Trends Mol. Med., 20, 271, 10.1016/j.molmed.2013.12.001
Fredman, 2015, Targeted nanoparticles containing the pro-resolving peptide Ac2-26 protect against advanced atherosclerosis, Sci. Transl. Med., 7, 275ra20, 10.1126/scitranslmed.aaa1065
Kamaly, 2013, Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles, Proc. Natl. Acad. Sci. U.S.A., 110, 6506, 10.1073/pnas.1303377110
Arur, 2003, Annexin I is an endogenous ligand that mediates apoptotic cell engulfment, Dev. Cell, 4, 587, 10.1016/S1534-5807(03)00090-X
Li, 2011, Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2, Oncogene, 30, 3887, 10.1038/onc.2011.112
Cash, 2008, Synthetic chemerin-derived peptides suppress inflammation through ChemR23, J. Exp. Med., 205, 767, 10.1084/jem.20071601
Cash, 2013, Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia–reperfusion injury through ChemR23, EMBO Rep., 14, 999, 10.1038/embor.2013.138
Cash, 2010, Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner, J. Immunol., 184, 5315, 10.4049/jimmunol.0903378
Serhan, 2014, Pro-resolving lipid mediators are leads for resolution physiology, Nature, 510, 92, 10.1038/nature13479
Arita, 2005, Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis, Proc. Natl. Acad. Sci. U.S.A., 102, 7671, 10.1073/pnas.0409271102
Haworth, 2008, Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation, Nat. Immunol., 9, 873, 10.1038/ni.1627
Clish, 1999, Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo, Proc. Natl. Acad. Sci. U.S.A., 96, 8247, 10.1073/pnas.96.14.8247
Norling, 2011, Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing, J. Immunol., 186, 5543, 10.4049/jimmunol.1003865
Li, 2009, Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet, Circ. Res., 105, 1072, 10.1161/CIRCRESAHA.109.199570
Brown, 2010, Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 30, 24, 10.1161/ATVBAHA.109.198036
Degirolamo, 2010, Dietary n-3 LCPUFA from fish oil but not alpha-linolenic acid-derived LCPUFA confers atheroprotection in mice, J. Lipid Res., 51, 1897, 10.1194/jlr.M005058
Nakajima, 2011, Orally administered eicosapentaenoic acid induces rapid regression of atherosclerosis via modulating the phenotype of dendritic cells in LDL receptor-deficient mice, Arterioscler. Thromb. Vasc. Biol., 31, 1963, 10.1161/ATVBAHA.111.229443
Wan, 2010, Endogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation, Arterioscler. Thromb. Vasc. Biol., 30, 2487, 10.1161/ATVBAHA.110.210054
Halvorsen, 2014, Aspirin therapy in primary cardiovascular disease prevention: a position paper of the European Society of Cardiology working group on thrombosis, J. Am. Coll. Cardiol., 64, 319, 10.1016/j.jacc.2014.03.049
Rayner, 2011, Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis, J. Clin. Investig., 121, 2921, 10.1172/JCI57275
Shaw, 2008, Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque, Circ. Res., 103, 1084, 10.1161/CIRCRESAHA.108.182063
Cardilo-Reis, 2012, Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype, EMBO Mol. Med., 4, 1072, 10.1002/emmm.201201374
Courties, 2014, In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing, J. Am. Coll. Cardiol., 63, 1556, 10.1016/j.jacc.2013.11.023
Nissen, 2007, Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes, N. Engl. J. Med., 356, 2457, 10.1056/NEJMoa072761
Vucic, 2012, Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin, JACC Cardiovasc. Imaging, 5, 819, 10.1016/j.jcmg.2011.11.025