AtC3H14, a plant‐specific tandem CCCH zinc‐finger protein, binds to its target mRNAs in a sequence‐specific manner and affects cell elongation in Arabidopsis thaliana

Won Chan Kim1,2, Joo Yeol Kim1,2, Jae‐Heung Ko3, Hunseung Kang4, Jungmook Kim5, Kyung Hwan Han1,2
1Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222 USA
2DOE-Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1222 USA
3Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701 Korea
4Department of Plant Biotechnology, Chonnam National University, 333 Yongbongro, Buk-gu, Gwangju, 500-757 Korea
5Department of Bioenergy Science and Technology, Chonnam National University, 333 Yongbongro, Buk-gu, Gwangju, 500-757 Korea

Tóm tắt

Summary

AtC3H14 (At1 g66810) is a plant‐specific tandem CCCH zinc‐finger (TZF) protein that belongs to the 68‐member CCCH family in Arabidopsis thaliana. In animals, TZFs have been shown to bind and recruit target mRNAs to the cytoplasmic foci where mRNA decay enzymes are active. However, it is not known whether plant TZF proteins such as AtC3H14 function. So far, no mRNA targets of plant TZFs have been identified. We have obtained several lines of experimental evidence in support of our hypothesis that AtC3H14 is involved in post‐transcriptional regulation of its target genes. Nucleic acid binding assays using [35S]‐labeled AtC3H14 protein showed that AtC3H14 could bind to ssDNA, dsDNA, and ribohomopolymers, suggesting its RNA‐binding activity. RNA immunoprecipitation (RIP) assay identified several putative target RNAs of AtC3H14, including a polygalacturonase, a well‐known cell wall modifying gene. RNA electrophoretic mobility shift assays (RNA‐EMSA) were used to confirm the RIP results and demonstrate that the TZF domain of AtC3H14 is required for the target RNA binding. Microarray analysis of 35S::AtC3H14 plants revealed that many of the cell wall elongation and/or modification‐associated genes were differentially expressed, which is consistent with the cell elongation defect phenotype and the changes in the cell wall monosaccharide composition. In addition, yeast activation assay showed that AtC3H14 also function as a transcriptional activator, which is consistent with the previous finding that AtC3H14 activate the secondary wall biosynthesis genes. Taken together, we conclude that AtC3H14 may play a key role in both transcriptional and post‐transcriptional regulation.

Từ khóa


Tài liệu tham khảo

10.1104/pp.63.4.609

10.1007/s00425-004-1246-1

10.1016/j.tibs.2007.12.003

10.1046/j.1365-313X.1997.11030605.x

10.1016/j.ceb.2009.03.005

10.1093/nar/gki1012

10.1146/annurev.arplant.54.031902.134938

10.1007/BF00027155

10.1105/tpc.105.037473

10.1074/jbc.M402551200

10.1242/dev.127.15.3395

10.1104/pp.104.042788

10.1126/science.281.5379.1001

Carballo E., 2000, Evidence that tristetraprolin is a physiological regulator of granulocyte–macrophage colony‐stimulating factor messenger RNA deadenylation and stability, Blood, 95, 1891, 10.1182/blood.V95.6.1891

10.1111/j.1365-313X.1993.tb00007.x

10.1186/1471-2164-13-253

10.1111/nph.12825

10.1007/s00425-002-0783-8

10.1007/s00018-012-1150-y

10.1046/j.1365-313x.1998.00343.x

10.1016/S0960-9822(01)00342-6

10.1093/nar/gkg101

10.1016/j.crvi.2010.01.010

10.1104/pp.110.156844

10.1093/jxb/40.1.1

10.1371/journal.pgen.1003281

10.1534/genetics.107.083212

10.1104/pp.117.2.337

10.1104/pp.105.072744

10.1016/j.jbiotec.2004.04.015

10.1146/annurev.pp.40.060189.001035

10.1038/nsmb738

10.1104/pp.112.205385

Jefferson R.A., 1987, GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 20, 3901, 10.1002/j.1460-2075.1987.tb02730.x

10.1105/tpc.020065

10.1104/pp.113.4.1303

10.1093/pcp/pcm087

10.1007/s11103-012-9880-7

10.1111/j.1365-313x.2012.05124.x

10.1016/j.jplph.2013.04.012

10.1104/pp.104.038844

10.1111/j.1365-313X.2007.03109.x

10.1111/j.1365-313X.2009.03989.x

10.1007/s11816-010-0159-7

10.1093/mp/sss076

10.1111/j.1467-7652.2012.00690.x

10.1128/MCB.00945-06

10.1016/S0959-440X(00)00167-6

10.1016/j.pbi.2006.09.009

10.1111/j.1365-313X.2010.04419.x

10.1006/meth.2001.1262

10.1104/pp.113.233387

10.1101/gad.1282305

10.1093/jxb/erp229

10.1016/j.carres.2004.06.023

10.1016/j.pbi.2008.04.001

10.1093/jxb/45.Special_Issue.1683

10.1016/S1360-1385(01)02045-3

10.1006/bbrc.2000.3182

10.1105/tpc.107.055046

10.1093/emboj/17.19.5563

10.1093/nar/gkn807

10.1016/j.tplants.2007.04.001

10.1074/jbc.M111457200

10.1104/pp.109.145656

10.1007/BF01282298

10.1101/gad.13.24.3259

10.1016/j.cell.2006.04.037

10.1146/annurev.cellbio.22.022206.160206

10.1210/me.10.2.140

10.1111/j.1365-313X.2009.03859.x

10.1034/j.1399-3054.2000.t01-1-100402.x

10.1078/0176-1617-00951

10.1186/1471-2164-9-44

10.1074/jbc.M011242200

10.1023/A:1006201910593

10.1105/tpc.107.053678