Asymptotics of variance of the lattice point count

Czechoslovak Mathematical Journal - Tập 58 - Trang 751-758 - 2008
Jiří Janáček1
1Institute of Physiology, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Tóm tắt

The variance of the number of lattice points inside the dilated bounded set rD with random position in ℝ d has asymptotics ∼ r d−1 if the rotational average of the squared modulus of the Fourier transform of the set is O(ϰ −d−1). The asymptotics follow from Wiener’s Tauberian theorem.

Tài liệu tham khảo

S. Bochner and K. Chandrasekharan: Fourier transforms. Princeton University Press, 1949. L. Brandolini, S. Hofmann and A. Iosevich: Sharp rate of average decay of Fourier transform of a bounded set. Geom. Func. Anal. 13 (2003), 671–680. J. Janáček: Variance of periodic measure of bounded set with random position. Comment. Math. Univ. Carolinae 47 (2006), 473–482. D. G. Kendall: On the number of lattice points inside a random oval. Quarterly J. Math. 19 (1948), 1–26. D. G. Kendall and R. A. Rankin: On the number of points of a given lattice in a random hypersphere. Quarterly J. Math., 2nd Ser. 4 (1953), 178–189. B. Matérn: Precision of area estimation: a numerical study. J. Microsc. 153 (1989), 269–283. G. Matheron: Les variables regionalisés et leur estimation. Masson et CIE, Paris, 1965. R. C. Rao: Linear statistical inference and its applications. 2nd ed., John Wiley & Sons, New York, 1973. J. Rataj: On set covariance and three-point test sets. Czech. Math. J. 54 (2004), 205–214. G. N. Watson: A treatise on the theory of Bessel functions. 2nd edition, Cambridge University Press, 1922. W. Rudin: Functional Analysis. McGraw-Hill Book Company, 1973. A. Varchenko: Number of lattice points in families of homothetic domains in ℝn. Func. Anal. Appl. 17 (1983), 79–83. N. Wiener: The Fourier integral and certain of its applications. Dover Publications Inc., New York, 1933.