Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop
Tài liệu tham khảo
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, Heidelberg, 1988.
S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series 271, Cambridge University Press, London, UK, 1999.
Brasche, 1994, Schrödinger operators with singular interactions, J. Math. Anal. Appl., 184, 112, 10.1006/jmaa.1994.1188
J.F. Brasche, A. Teta, Spectral analysis and scattering theory for Schödinger operators with an interaction supported by a regular curve, in: Ideas and Methods in Quantum and Statistical Physics, Cambridge University Press, London, UK, 1992, pp. 197–211.
Dabrowski, 1988, Finitely many sphere interactions in quantum mechanics: nonseparated boundary conditions, J. Math. Phys., 29, 2241, 10.1063/1.528153
Exner, 2001, Geometrically induced spectrum in curved leaky wires, J. Phys. A: Math. Gen., 34, 1439, 10.1088/0305-4470/34/7/315
T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
Kurylev, 1978, Boundary conditions on a curve for a three-dimensional Laplace operator, Zapiski LOMI, 78, 112
M. Reed, B. Simon, Methods on Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, San Diego, 1978.
Shondin, 1995, On the semiboundedness of δ-perturbations of the Laplacian supported by curves with angle points, Theor. Math. Phys., 105, 1189, 10.1007/BF02067488
Yoshitomi, 1998, Band gap of the spectrum in periodically curved quantum waveguides, J. Differential Equations, 142, 123, 10.1006/jdeq.1997.3337