Asymptotics for Lp-norms of Fourier series density estimators

Springer Science and Business Media LLC - Tập 6 - Trang 375-397 - 1990
Lajos Horváth1,2
1Bolyai Institute, Szeged University, Szeged, Hungary
2Department of Mathematics, University of Utah, Salt Lake City, USA

Tóm tắt

LetX 1, X2, ⋯, be a sequence of independent, identically distributed bounded random variables with a smooth density functionf. We prove that $$\int_a^b | f_{m,n} (t) - f(t)|^p w(t)dt(1 \leqslant p< \infty )$$ is asymptotically normal, wheref m, n is the Fourier series density estimator offandw is a nonnegative weight function.

Tài liệu tham khảo

P. J. Bickel, M. Rosenblatt (1973):On some global measures of the deviations of density function estimates. Ann. Statist.,1:1071–1095. M. Csörgö, L. Horváth (1988):Central limit theorems for L p-norms of density estimators. Probab. Theory Related Fields,80:269–291. M. Csörgö, P. Révész (1981): Strong Approximations in Probability and Statistics. New York: Academic Press. L. Devroye, L. Györfi (1985): Nonparametric Density Estimation: the L1 View. New York: Wiley. P. J. Diggle, P. Hall (1986):The selection of terms in an orthogonal series density estimator. J. Amer. Statist. Assoc.,81:230–233. P. Hall (1982a):Limit theorems for stochastic measures of the accuracy of density estimators. Stochastic Process. Appl.,13:11–25. P. Hall (1982b):The order of the approximation to a Wiener process by its Fourier series. Math. Proc. Cambridge Philos. Soc.,92:547–562. P. Hall (1983):Measuring the efficiency of trigonometric series estimates of a density. J. Multivariate Anal.,13:234–256. J. D. Hart (1985):On the choice of a truncation point in Fourier series density estimation. J. Statist. Comput. Simulation,21:95–116. R. Kronmal, M. Tarter (1968):The estimation of probability densities and cumulatives by Fourier series methods. J. Amer. Statist. Assoc.,63:925–952. E. Nadaraja (1976):On a quadratic measure of the deviation of projection density estimates. Theory Probab. Appl.,21:864–871. B. L. S. Prakasa Rao (1983): Nonparametric Functional Estimation. New York: Academic Press. P. Révész (1984):Density estimation. In: Handbook of Statistics, Vol. 4, Nonparametric Methods (P. R. Krishnaiah, P. K. Sen, eds.). Amsterdam: North-Holland, pp. 531–549. K. R. Stromberg (1987): An Introduction to Classical Real Analysis. Belmont, CA: Wadsworth. A. Zygmund (1959): Trigonometric Series, Vol. 1. Cambridge: Cambridge University Press.