Asymptotic tensor rank of graph tensors: beyond matrix multiplication
Tóm tắt
Từ khóa
Tài liệu tham khảo
Martin Aigner Günter M. Ziegler: Proofs from The Book. Springer-Verlag, Berlin (2014) 5th edition. ISBN 978-3-662-44204- 3; 978-3-662-44205-0, viii+308 . URL https://doi.org/10.1007/978-3-662-44205-0 .
Markus Bläser (2013). Fast Matrix Multiplication. Number 5 in Graduate Surveys. Theory of Computing Library, 1–60.
Harry Buhrman, Matthias Christandl & Jeroen Zuiddam (2017). Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication. Proceedings of the 2017 ACM Conference on Innovations in Theoretical Computer Science.
Peter Bürgisser., Michael Clausen M., Amin Shokrollahi.: Algebraic complexity theory, volume 315 of Grundlehren Math Wiss. Springer-Verlag, Berlin (1997) ISBN 3-540-60582-7, xxiv+618 URL https://doi.org/10.1007/978-3-662-03338-8 .
Matthias Christandl & Jeroen Zuiddam (2018). Tensor surgery and tensor rank. computational complexity ISSN 1420-8954. URL https://doi.org/10.1007/s00037-018-0164-8 .
Don Coppersmith & Shmuel Winograd (1987). Matrix multiplication via arithmetic progressions. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, 1–6. ACM.
Thomas M. Cover & Joy A. Thomas (2012). Elements of information theory. John Wiley & Sons.
Wolfgang Dür., Guifre Vidal., Ignacio Cirac J.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062 314 (2000)
Hu Fu & Robert Kleinberg (2014). Improved lower bounds for testing triangle-freeness in Boolean functions via fast matrix multiplication. In Approximation, randomization, and combinatorial optimization, volume 28 of LIPIcs. Leibniz Int. Proc. Inform.,669–676. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern.
Ishay Haviv & Ning Xie (2015). Sunflowers and testing triangle freeness of functions. In ITCS’15—Proceedings of the 6th Innovations in Theoretical Computer Science, 357–366. ACM, New York.
François Le Gall (2012). Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, 514–523. IEEE Computer Soc., Los Alamitos, CA.
François Le Gall (2014). Powers of tensors and fast matrix multiplication. In ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 296–303. ACM, New York. URL https://doi.org/10.1145/2608628.2608664 .
Salem R., Spencer D.C.: On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. U.S.A. 28, 561–563 (1942) ISSN 0027-8424.
Arnold Schönhage.: Partial and total matrix multiplication. SIAM Journal on Computing 10(3), 434–455 (1981)
John K., Stockton J.M., Geremia Andrew C., Doherty Hideo Mabuchi: Characterizing the entanglement of symmetric many-particle spin-1 2 systems. Phys. Rev. A 67(2), 022 112 (2003)
Volker Strassen (1986). The Asymptotic Spectrum of Tensors and the Exponent of Matrix Multiplication. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86, 49–54. IEEE Computer Society, Washington, DC, USA. ISBN 0-8186-0740-8. URL https://doi.org/10.1109/SFCS.1986.52 .
Volker Strassen.: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375(376), 406–443 (1987) ISSN 0075-4102. URL https://doi.org/10.1515/crll.1987.375-376.406 .
Volker Strassen.: The asymptotic spectrum of tensors. J. Reine Angew. Math. 384, 102–152 (1988) ISSN 0075-4102. URL https://doi.org/10.1515/crll.1988.384.102 .
Volker Strassen.: Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math. 413, 127–180 (1991) ISSN 0075-4102. URL https://doi.org/10.1515/crll.1991.413.127 .
Péter Vrana & Matthias Christandl (2015). Asymptotic entanglement transformation between W and GHZ states. J. Math. Phys. 56(2), 022 204, 12. ISSN 0022-2488. URL https://doi.org/10.1063/1.4908106 .