Asymptotic results for tail probabilities of sums of dependent and heavy-tailed random variables

Chinese Annals of Mathematics, Series B - Tập 33 - Trang 557-568 - 2012
Kam Chuen Yuen1, Chuancun Yin2
1Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
2School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, China

Tóm tắt

Let X 1,X 2, ... be a sequence of dependent and heavy-tailed random variables with distributions F 1, F 2, ... on (−∞,∞), and let τ be a nonnegative integer-valued random variable independent of the sequence {X k , k ≥ 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities $$S_n = \sum\limits_{k = 1}^n {X_k }$$ and $$S_{(n)} = \mathop {\max }\limits_{1 \leqslant k \leqslant n} S_k$$ for n > 1, and their randomized versions S τ and S (τ) are studied. Some applications to the risk theory are presented.

Tài liệu tham khảo

Albrecher, H., Asmussen, S. and Kortschak, D., Tail asymptotics for the sum of two heavy-tailed dependent risks, Extremes, 9, 2006, 107–130. Asmussen, S., Ruin Probabilities, World Scientific, Singapore, 2000. Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular Variation, Cambridge University Press, Cambridge, 1987. Chen, Y. and Yuen, K. C., Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stoch. Models, 25, 2009, 76–89. Denisov, D., Foss, S. and Korshunov, D., Tail asymptotics for the supremum of a random walk when the mean is not finite, Queueing Syst., 46, 2004, 15–33. Denisov, D., Foss, S. and Korshunov, D., On lower limits and equivalences for distribution tails of randomly stopped sums, Bernoulli, 14, 2008, 391–404. Denisov, D., Foss, S. and Korshunov, D., Lower limits for distribution tails of randomly stopped sums, Theory Probab. Appl., 52, 2008, 690–699. Denisov, D., Foss, S. and Korshunov, D., Asymptotics of randomly stopped sums in the presence of heavy tails, Bernoulli, 16(4), 2010, 971–994. Embrechts, P., Goldie, C. M. and Veraverbeke, N., Subexponentiality and infinite divisibility, Z. Wahrsch. Verw. Gebiete, 49, 1979, 335–347. Embrechts, P., Klüppelberg, C. and Mikosch, T., Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin, 1997. Foss, S. and Korshunov, D., Lower limits and equivalences for convolution tails, Ann. Probab., 35, 2007, 366–383. Foss, S. and Richards, A., On sums of conditionally independent subexponential random variables, Math. Oper. Res., 35(1), 2010, 102–119. Geluk, J. and Tang, Q. H., Asymptotic tail probabilities of sums of dependent subexponential random variables, J. Theoret. Probab., 22, 2009, 871–882. Kaas, R. and Tang, Q. H., Note on the tail behavior of random walk maxima with heavy tails and negative drift, North Amer. Actuar. J., 7(3), 2003, 57–61. Klüppelberg, C., Subexponential distributions and integrated tails, J. Appl. Probab., 25, 1988, 132–141. Ko, B. and Tang, Q. H., Sums of dependent nonnegative random variables with subexponential tails, J. Appl. Probab., 45, 2008, 85–95. Korshunov, D., Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory Probab. Appl., 46, 2002, 355–366. Kotz, S., Balakrishnan, N. and Johnson, N. L., Continuous Multivariate Distributions: Models and Applications, 2nd ed., Vol. 1, Wiley, New York, 2000. Nelsen, R. B., An Introduction to Copulas, 2nd ed., Springer-Verlag, New York, 2006. Ng, K. W., Tang, Q. H., Yan, J. A. and Yang, H. L., Precise large deviations for the prospective-loss process, J. Appl. Probab., 40, 2003, 391–400. Ng, K. W. and Tang, Q. H., Asymptotic behavior of tail and local probabilities for sums of subexponential random variables, J. Appl. Probab., 41, 2004, 108–116. Ng, K. W., Tang, Q. H. and Yang, H. L., Maxima of sums of heavy-tailed random variables, ASTIN Bull., 32, 2002, 43–55. Resnick, S. I., Hidden regular variation, second order regular variation and asymptotic independence, Extremes, 5, 2002, 303–336. Tang, Q. H., The ruin probability of a discrete time risk model under constant interest rate with heavy tails, Scandinavian Actuarial Journal, 3, 2004, 229–240. Tang, Q. H., Asymptotic ruin probabilities in finite horizon with subexponential losses and associated discount factors, Probab. Engrg. Inform. Sci., 20, 2006, 103–113. Yu, C., Wang, Y. and Cui, Z., Lower limits and upper limits for tails of random sums supported on ℝ, Statist. Prob. Lett., 80, 2010, 1111–1120.