Asymptotic in Sobolev spaces for symmetric Paneitz-type equations on Riemannian manifolds

Springer Science and Business Media LLC - Tập 35 - Trang 385-407 - 2008
Nicolas Saintier1,2
1Departamento de Matemática, FCEyN, Universidad de Buenos-Aires, Buenos Aires, Argentina
2Universidad Nacional de General Sarmiento, Los Polvorines, Pcia de Buenos Aires, Argentina

Tóm tắt

We describe the asymptotic behaviour in Sobolev spaces of sequences of solutions of Paneitz-type equations [Eq. (E α ) below] on a compact Riemannian manifold (M, g) which are invariant by a subgroup of the group of isometries of (M, g). We also prove pointwise estimates.

Tài liệu tham khảo

Bredon G.E.: Introduction to compact transformation groups. Pure and Applied Mathematics, vol. 46. Academic Press, London (1972) Chang, S.Y.A.: On Paneitz Operator—a fourth order differential operator in conformal geometry. In: Christ, M., Kenig, C., Sadorsky, C. (Eds.) Harmonic Analysis and Partial Differential Equations, Essays in honor of Alberto P. Calderon. Chicago Lectures in Mathematics, pp. 127–150 (1999) Chang, S.Y.A, Yang, P.C.: On a fourth order curvature invariant. In: Branson, T. (Ed.) Spectral Problems in Geometry and Arithmetic, Comp. Math. vol. 237, pp. 9–28. AMS (1999) Clapp, M.: A global compactness result for elliptic problems with critical nonlinearity on symmetric domains. Nonlinear Equations: Methods, Models and Applications, Progr. Nonlinear Differential Equations Applications, vol. 54, pp. 117–126. Birkhäuser, Boston (2003) Djadli Z., Hebey E., Ledoux M.: Paneitz-type operators and applications. Duke Math. J. 104(1), 129–169 (2000) Edmunds D.E., Fortunato F., Janelli E.: Critical exponents, critical dimensions, and the biharmoni operator. Arch. Rational. Mech. Anal. 112, 269–289 (1990) Faget Z.: Best constant in Sobolev inequalities on Riemannian manifolds in the presence of symmetries. Potential Anal. 17(2), 105–124 (2002) Faget Z.: Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries. Ann. Global Anal. Geom. 24, 161–200 (2003) Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, vol. 5 (1999) Hebey E.: Sharp Sobolev inequalities of second order. J. Geom. Anal. 13(1), 145–162 (2003) Hebey E., Robert F.: Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13(4), 491–517 (2001) Hebey E., Vaugon M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76(10), 859–881 (1997) Lieb E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983) Lin C.S.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R}^n}\) . Comment Math. Helv. 73, 206–231 (1998) Lions P.L.: The concentration-compactness principle in the calculus of variations, the limit case, parts 1 and 2. Rev. Mat. Iberoamericana 1, 145–201 (1985) 45–121 Robert F.: Positive solutions for a fourth order equation invariant under isometries. Proc. Am. Math. Soc. 131(5), 1423–1431 (2003) Saintier N.: Asymptotic estimates and blow-up theory for critical equations involving the p-laplacian. Calc. Var. Partial Differ. Equ. 25(3), 299–331 (2006) Saintier N.: Changing sign solutions of a conformally invariant fourth order equation in the Euclidean space. Commun. Anal. Geometry 14(4), 613–624 (2006) Saintier, N.: Best constant in critical Sobolev inequalities of second order in the presence of symmetries on Riemannian manifolds (in preparation) Struwe M.: A global compactness result for elliptic boundary value problem involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984) Struwe M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Berlin (2000)