Asymptotic factorization of Wiener–Hopf kernels

Wave Motion - Tập 33 - Trang 51-65 - 2001
D.G. Crighton1
1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver St., Cambridge CB3 9EW, UK

Tài liệu tham khảo

B. Noble, Methods Based on the Wiener–Hopf Technique, Chelsea, New York, 1988 (original published by Pergamon Press, London, 1958). Kranzer, 1962, Asymptotic factorization for perturbed Wiener–Hopf problems, J. Math. Anal. Appl., 4, 240, 10.1016/0022-247X(62)90053-7 Kranzer, 1965, An asymptotic method for solving perturbed Wiener–Hopf problems, J. Math. Mech., 14, 41 Kranzer, 1967, Asymptotic factorizations in nondissipative Wiener–Hopf problems, J. Math. Mech., 17, 577 M. Van Dyke, Perturbation Methods in Fluid Mechanics, 2nd Annotated Edition, Parabolic, Stanford, CA, 1975. P.A. Lagerstrom, Matched Asymptotic Expansions, Springer, New York, 1988. J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics, Springer, New York, 1981. Crighton, 1974, Radiation properties of the semi-infinite vortex sheet: the initial value problem, J. Fluid Mech., 64, 393, 10.1017/S0022112074002461 Crighton, 1992, The jet edge-tone feedback cycle: linear theory for the operating stages, J. Fluid Mech., 234, 361, 10.1017/S002211209200082X Crighton, 1973, Singular perturbation methods in acoustics: diffraction by a plate of finite thickness, Proc. R. Soc. London A, 335, 313, 10.1098/rspa.1973.0128