Asymptotic expansions for some integrals of quotients with degenerated divisors

Russian Journal of Mathematical Physics - Tập 24 Số 4 - Trang 476-487 - 2017
Kuksin, S.1
1CNRS, Institut de Mathémathiques de Jussieu–Paris Rive Gauche, UMR 7586, Université Paris Diderot, Sorbonne Paris Cité, Paris, France

Tóm tắt

We study the asymptotic expansion as ν → 0 for integrals over R2d = {(x, y)} of the quotients F(x, y)/((x · y)2 + (νΓ(x, y))2), where Γ is strictly positive and F decays at infinity sufficiently fast. Integrals of this kind appear in the description of the four-waves interactions.

Tài liệu tham khảo

citation_title=Spectral Asymptotics in the Semi-Classical Limit; citation_publication_date=1999; citation_id=CR1; citation_author=M. Dimassi; citation_author=J. Sjöstrand citation_title=The Analysis of Linear Partial Differential Equations; citation_publication_date=1983; citation_id=CR2; citation_author=L. Hörmander citation_journal_title=Physica D; citation_title=Derivation of a Wave Kinetic Equation from the Resonant-Averaged Stochastic NLS Equation; citation_author=S. Kuksin, A. Maiocchi; citation_volume=309; citation_publication_date=2015; citation_pages=65-70; citation_doi=10.1016/j.physd.2015.04.002; citation_id=CR3 citation_journal_title=Interactions in Geophysical Fluids, Oberwolfach Report; citation_title=The Zakharov-Lvov Stochastic Model for the Wave Turbulence; citation_author=S. Kuksin; citation_volume=39; citation_publication_date=2016; citation_pages=37-39; citation_id=CR4 citation_title=Wave Turbulence; citation_publication_date=2011; citation_id=CR5; citation_author=S. Nazarenko