Asymptotic behaviour of solutions to abstract logistic equations

Mathematical Biosciences - Tập 206 - Trang 216-232 - 2007
Janet Dyson1, Rosanna Villella-Bressan2, Glenn F. Webb3
1Mansfield College, University of Oxford, Oxford, England, UK
2Dipartimento di Matematica Pura e Applicata, Universita di Padova, Padova, Italy
3Department of Mathematics, Vanderbilt University, Nashville, TN, USA

Tài liệu tham khảo

Adimy, 2001, A singular transport equation modelling cell division, C. R. Acad. Sci. Paris, 332, 1 Adimy, 2003, Asymptotic behavior of a singular transport equation modelling cell division, Discr. Cont. Dyn. Sys., 3, 439, 10.3934/dcdsb.2003.3.439 Arino, 1995, Mathematical modelling of the loss of telomere sequences, J. Theor. Biol., 177, 45, 10.1006/jtbi.1995.0223 Arino, 1997, Polynomial growth of telomere loss in a heterogenous cell population, Dyn. Cont. Discr. Impul. Sys., 3, 263 Arino, 1997, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215, 499, 10.1006/jmaa.1997.5654 Bernard, 2003, Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data, Biophys. J., 84, 3414, 10.1016/S0006-3495(03)70063-0 S.Bernard, L. Pujo-Menjouet, M.C. Mackey, Long period oscillations in a go model of hematopoietic stem Cells, in press. Bertuzzi, 2004, Modelling cell populations with spatial structure: steady state and treatment-induced evolution of tumor cords, Discr. Cont. Dyn. Sys. B, 4, 161 A. Bertuzzi, A. Fasano, L. Filidoro, A. Gandolfi, A. Sinisgalli, Dynamics of tumor cords following changes in oxygen availability: A model including a delayed exit from quiescence, in press. A. Bertuzzi, A. Fasano, A. Gandolfi, A mathematical model for the growth of tumor cords incorporating the dynamics of a nutrient, in: N. Kenmochi (Ed.), Free Boundary Value Problems: Theory, and Applications II, Math. Sci. Appl. 14, Gakkotosho, Tokyo, 2000, p. 31. A. Bertuzzi, A. Fasano, A. Gandolfi, Analysis of a mathematical model for tumour cords including spatially distributed spontaneous or treatment-induced cell death, in press. Bertuzzi, 2004, A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents, SIAM J. Math. Analy., 36, 882, 10.1137/S003614002406060 Bertuzzi, 2002, Cell kinetics in tumour cords studied by a model with variable cell cycle length, Math. Biosci., 177&178, 103, 10.1016/S0025-5564(01)00114-6 Bertuzzi, 2000, Cell kinetics in a tumour cord, J. Theor. Biol., 204, 587, 10.1006/jtbi.2000.1079 Dyson, 2002, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells, Math. Biosci., 177&178, 73, 10.1016/S0025-5564(01)00097-9 Dyson, 2004, The steady state of maturity structured tumor cord cell population, Discr. Cont. Dyn. Sys., 4, 115 Dyson, 2004, The evolution of a tumour cord cell population, Comm. Pure Appl. Analy., 3, 331, 10.3934/cpaa.2004.3.331 J. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, Oxford, 1985. Gyllenberg, 1985, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev. Aging., 53, 25 Gyllenberg, 1987, Age-size structure in populations with quiescence, Math. Biosci., 86, 67, 10.1016/0025-5564(87)90064-2 Harley, 1991, Telomere loss: mitotic clock or genetic time bomb?, Mutat. Res., 256, 271, 10.1016/0921-8734(91)90018-7 Hayflick, 1961, The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585, 10.1016/0014-4827(61)90192-6 Hayflick, 1965, The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 36, 614, 10.1016/0014-4827(65)90211-9 Kato, 1966 Kozusko, 2003, Combining Gompertzian growth and cell population dynamics, Math. Biosc., 185, 153, 10.1016/S0025-5564(03)00094-4 Levy, 1992, Telomere end-replication problem and cell aging, J. Molec. Biol., 225, 951, 10.1016/0022-2836(92)90096-3 Mackey, 1999, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 38, 195, 10.1007/s002850050146 Mackey, 1994, A new criterion for the global stability of simultaneous cell replication and maturation processes, J. Math. Biol., 33, 89, 10.1007/BF00160175 Olovnikov, 1973, A theory of marginotomy, J. Theor. Biol., 41, 181, 10.1016/0022-5193(73)90198-7 Pilyugin, 1997, Modeling T-cell proliferation: an investigation of the consequences of the Hayflick limit, J. Theor. Biol., 186, 117, 10.1006/jtbi.1996.0319 Pujo-Menjouet, 2004, Contribution to the study of periodic chronic myelogenous leukemia, C.R. Biologies, 327, 235, 10.1016/j.crvi.2003.05.004 Pujo-Menjouet, 2000, Global stability of cellular populations with unequal division, Canad. Appl. Math. Quart., 8, 185, 10.1216/camq/1032375042 Thieme, 1998, Balanced exponential growth of operator semigroups, J. Math. Anal. Appl., 223, 30, 10.1006/jmaa.1998.5952 Thieme, 2000, Balanced exponential growth for perturbed operator semigroups, Adv. Math. Sci. Appl., 10, 775 Webb, 1985, Theory of nonlinear age-dependent population dynamics Webb, 1986, Logistic models of structured population growth, Int. J. Comput. Math. Appl., 12A, 527, 10.1016/0898-1221(86)90178-1 Webb, 1987, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303, 751, 10.1090/S0002-9947-1987-0902796-7 Webb, 2002, The steady state of a tumor cord cell population, J. Evol. Eqs., 2, 425, 10.1007/PL00012598