Asymptotic behaviour of densities of stable semigroups of measures

Springer Science and Business Media LLC - Tập 87 - Trang 459-467 - 1991
Jacek Dziubański1
1Institute of Mathematics Polish Academy of Sciences, Mathematical Institute University of Wrocław, Wrocław, Poland

Tóm tắt

We prove that densities of the measures in a strictly stable semigroup (h t ) of symmetric measures on a homogeneous group, if they exist, have the following asymptotic behaviour: $$\mathop {\lim |}\limits_{|x| \to \infty } x|^{Q + \alpha } \cdot h_1 (x) = k(\bar x),$$ where α is the characteristic exponent, $$\bar x = |x|^{ - 1} x$$ , andk is the density of the Lévy measure associated to the semigroup. Moreover, if $$k(\bar x) = 0$$ a more precise description is given.

Tài liệu tham khảo

Bourbaki, N.: Groupes et algèbres de Lie, Chap. I–III. (Elements de Math, Fasc. 26 et 37) Paris: Hermann 1960 and 1972 Duflo, M.: Representations de semi-groupes de mesures sur un groupe localment compact. Ann. Inst. Fourier28, 225–249 (1978) Feller, W.: An introduction to probability theory and its application II. New York: Wiley 1966 Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups. Princeton, N.J.: Princeton University Press 1982 Gikhman, I.I., Skorohod, A.W.: Introduction to stochastic processes theory (in Russian). Moscow: Nauka 1965 Głowacki, P.: Stable semigroups of measures as commutative approximate identities on non-graded homogeneous groups. Invent. Math.83, 557–582 (1986) Głowacki, P.: The Rockland condition for non-differential convolution operators. Duke Math. J.58, 371–395 (1989) Głowacki, P., Hebisch, W.: Pointwise estimates for densities of stable semigroups of measures. Preprint, Wrocław 1990 Hulanicki, A.: A class of convolution semigroups of measures on a Lie group. (Lect. Notes Math., vol. 828, pp. 82–101) Berlin Heidelberg New York: Springer 1980 Hunt, G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc.81, 264–293 (1956) Janssen, A.: Charakterisierung stetiger Faltungshalbgruppen durch das Lévy-Maß. Math. Ann.246, 233–240 (1980) Pazy, P.: Semigroups of linear operators and applications to partial differential equations. Berlin Heidelberg New York: Springer 1983 Schwartz, L.: Théorie des distributions. Paris: Hermann 1966 Sharpe, M.: Operator-stable probability distribution on vector groups. Trans. Am. Math. Soc.136, 51–65 (1969)