Asymptotic behavior of least energy solutions for a singularly perturbed problem with nonlinear boundary condition

Springer Science and Business Media LLC - Tập 49 - Trang 491-516 - 2013
Emerson Abreu1, João Marcos do Ó2, Everaldo Medeiros2
1Departamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Brazil

Tóm tắt

We consider the problem of finding a positive harmonic function $$u_\varepsilon $$ in a bounded domain $$\Omega \subset \mathbb R ^N (N\ge 3)$$ satisfying a nonlinear boundary condition of the form $$\varepsilon \partial _{\nu } u +u =|u|^{p-2}u,\,x\in \partial \Omega $$ , where $$\varepsilon $$ is a positive parameter and $$2

Tài liệu tham khảo

Abreu, E., do Ó, J.M., Medeiros, E.: Properties of positive harmonic functions on the half-space with a nonlinear boundary condition. J. Differ. Equ. 248, 617–637 (2010) Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973) Adimurthi, S., Yadava, L.: Some remarks on Sobolev type inequalities. Calc. Var. Partial Diffe. Equ. 2, 427–442 (1994) Calderón, A.P.: On an inverse boundary value problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, pp. 65–73, Soc. Brasil. Mat., pp. 65–73. Rio de Janeiro (1980) Bonder, J.F., Rossi, J.D.: Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Commun. Pure Appl. Anal. 1, 359–378 (2002) del Pino, M., Felmer, P.: Spike-layered of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883–898 (1999) del Pino, M., Flores, C.: Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains. Comm. Partial Differ. Equ. 26, 2189–2210 (2001) Ding, W.Y., Ni, W.M.: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Mech. Anal. 91, 283–308 (1986) Escobar, J.F.: Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Commun. Pure Appl. Math. 43, 857–883 (1990) Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988) Ganesh, M., Graham, I.G., Sivaloganathan, J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM J. Numer. Anal. 31, 1378–1414 (1994) Garcia Azorero, J., Malchiodi, A., Montoro, L., Peral, I.: Concentration of solutions for some singularly perturbed mixed problems. Part I: existence results. Arch. Ration. Mech. Anal. 196(3), 907–950 (2010a) Garcia Azorero, J., Malchiodi, A., Montoro, L., Peral, I.: Concentration of solutions for some singularly perturbed mixed problems. Part II: asymptotic of minimal energy solutions. Ann. Inst. H. Poincar Anal. Non Linaire 27, 37–56 (2010b) Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983) Hu, B.: Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Differ. Integral Equ. 7, 301–313 (1994) Li, Y., Zhu, M.: Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries. Commun. Pure Appl. Math. 50, 449–487 (1997) Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988) Liu, X., Liu, J.: On a boundary value problem in the half-space. J. Differ. Equ. 250, 2099–2142 (2011) Nečas, J.: Les méthodes directes en thorie des équations elliptiques. (French) Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 Ni, W.M., Takagi, I.: On the shape of least-energy solution to a semilinear Neumann problem. Commun. Pure Appl. Math. 41, 819–851 (1991) Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993) Pao, C.V.: Reaction diffusion systems with time delays in a half-space domain. Nonlinear Anal. 47, 4365–4375 (2001) Pierotti, D., Terracini, S.: On a Neumann problem with critical exponent and critical nonlinearity on the boundary. Commun. Partial Differ. Equ. 20, 1155–1187 (1995) Sattinger, D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21, 979–1000 (1971/1972) Stekloff, W.: Sur les problmes fondamentaux de la physique mathmatique. Ann. Sci. cole Norm. Sup. 19, 455–490 (1902) Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edn. Springer, Berlin (2000) Vladimirov, V.S., Mikhaĭlov, V.P., Vasharin, A.A., Karimova, K.K., Sidorov, Y.V., Shabunin,M.I.: A Collection of Problems on the Equations of Mathematical Physics. Mir Publishers, Moscow; Springer, Berlin (1986) Wei, J.: On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem. J. Differ. Equ. 129(2), 315–333 (1996)