Asymptotic arbitrage and large deviations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bachelier L. (1900) Théorie de la Spéculation. Ann. Sci. Ecole Norm. Sup., Vol. 17, pp. 21–86, English translation in: The Random Character of stock prices (P. Costner, editor), MIT Press, 1964
Becherer D.: The numéraire portfolio for unbounded semimartingales. Financ. Stoch. 5(3), 327–341 (2001)
Chamberlain G., Rothschild M.: Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica 51, 1281–1304 (1983)
Constantinides G.: A note on the suboptimality of dollar-cost averaging as an investment policy. J. Financ. Quant. Anal. 14, 443–450 (1979)
Delbaen F., Schachermayer W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Delbaen F., Schachermayer W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)
Delbaen F., Schachermayer W.: The Mathematics of Arbitrage. Springer, Heidelberg (2006)
Dempster M., Evstigneev I., Schenk-Hoppé K.: Exponential growth of fixed-mix strategies in stationary asset markets. Financ. Stoch. 7, 263–276 (2003)
Dempster, M., Evstigneev, I., Schenk-Hoppé, K.: Volatility-induced financial growth. Research Papers in Management Studies WP 10/2004. Judge Institute of Management, University of Cambridge, October 2004
Dybvig Ph.: Inefficient dynamic portfolio strategies or how to throw away a million dollars in the stock market. Rev. Finan. Stud. 1, 67–88 (1988)
Evstigneev I., Schenk-Hoppé K.: From rags to riches: on constant proportions investment strategies. Int. J. Theor. Appl. Financ. 5, 563–573 (2002)
Fleming W.H., Sheu S.-J.: Optimal long term growth rate of expected utility of wealth. Ann. Appl. Probab. 9(3), 871–903 (1999)
Florens-Landais D., Pham H.: Large deviations in estimation of an Ornstein–Uhlenbeck model. J. Appl. Probab. 36(1), 60–77 (1999)
Föllmer H., Schweizer M.: Hedging of Contingent Claims under Incomplete Information. In: Davis, M.H.A., Elliot, R.J. (eds) Applied Stochastic Analysis, pp. 389–414. Gordon and Breach, New York (1991)
Harrison J.M., Kreps D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)
Harrison J.M., Pliska S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981)
Kabanov Yu., Kramkov D.: Asymptotic Arbitrage in large financial markets. Financ. Stoch. 2, 143–172 (1998)
Karatzas I., Lehoczky J.P., Shreve S.E.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)
Karatzas I., Lehoczky J.P., Shreve S.E., Xu G.L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)
Klein I., Schachermayer W.: A quantitative and a dual version of the Halmos-Savage theorem with applications to mathematical finance. Ann. Probab. 24(2), 867–881 (1996)
Knispel, T.: Asymptotics of robust utility maximization. Working Paper HU, Berlin (2008)
Kramkov D., Schachermayer W.: The condition on the asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)
Kreps D.M.: Arbitrage and equilibrium in economics with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)
Merton R.C.: Lifetime portfolio selection under uncertainty: the continuous case. Rev. Econ. Stat. 51, 247–257 (1969)
Merton R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 8, 373–413 (1971)
Pham H.: A large deviation approach to optimal long term investment. Financ. Stoch. 7(2), 169–195 (2003)
Rogers L.C.G., Williams D.: Diffusions, Markov Processes and Martingales, vol. 1 and 2. Cambridge University Press, Cambridge (2000)
Samuelson P.A.: Proof that properly anticipated prices fluctuate randomly. Ind. Manag. Rev. 6, 41–50 (1965)