Asymptotic analysis of the conventional and invariant schemes for the method of fundamental solutions applied to potential problems in doubly-connected regions
Tóm tắt
The aim of this paper is to develop mathematical theory of the conventional and invariant schemes for the method of fundamental solutions used to solve potential problems in doubly-connected regions. Particularly, we prove that an approximate solution actually exists uniquely under some conditions, and that the error decays exponentially when the boundary data are analytic, and algebraically when they are not analytic but belong to some Sobolev spaces. Moreover, we present results of several numerical experiments in order to show the sharpness of our error estimate.
Tài liệu tham khảo
Ala, G., Fasshauer, G., Francomano, E., Ganci, S., Mccourt, M.: The method of fundamental solutions in solving coupled boundary value problems for M/EEG. SIAM J. Sci. Comput. 37(4), B570–B590 (2015)
Amano, K., Okano, D., Ogata, H., Sugihara, M.: Numerical conformal mappings onto the linear slit domain. Jpn. J. Ind. Appl. Math. 29(2), 165–186 (2012)
Arnold, D.N.: A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput. 41(164), 383–397 (1983)
Arnold, D.N., Wendland, W.L.: The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math. 47(3), 317–341 (1985)
Ashbee, T.L., Esler, J.G., McDonald, N.R.: Generalized Hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions. J. Comput. Phys. 246, 289–303 (2013)
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)
Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)
Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)
Chen, C.S., Jiang, X., Chen, W., Yao, G.: Fast solution for solving the modified Helmholtz equation with the method of fundamental solutions. Commun. Comput. Phys. 17(3), 867–886 (2015)
Chen, W., Lin, J., Chen, C.S.: The method of fundamental solutions for solving exterior axisymmetric Helmholtz Problems with high wave-number. Adv. Appl. Math. Mech. 5(4), 477–493 (2013)
Comodi, M.I., Mathon, R.: A boundary approximation method for fourth order problems. Math. Models Meth. Appl. Sci. 1(4), 437–445 (1991)
Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69–95 (1998)
Gáspár, G.: A regularized multi-level technique for solving potential problems by the method of fundamental solutions. Eng. Anal. Bound. 57, 66–71 (2015)
Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)
Johansson, B.T., Lesnic, D., Reeve, T.: The method of fundamental solutions for the two-dimensional inverse Stefan problem. Inverse Probl. Sci. Eng. 22(1), 112–129 (2014)
Kangro, U.: Convergence of collocation method with delta functions for integral equations of first kind. Integr. Equ. Oper. Theory 66(2), 265–282 (2010)
Karageorghis, A.: Efficient MFS algorithms for inhomogeneous polyharmonic problems. J. Sci. Comput. 46(3), 519–541 (2011)
Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Probl. Sci. Eng. 19(3), 309–336 (2011)
Katsurada, M.: A mathematical study of the charge simulation method II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)
Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algor. 68, 185–211 (2015)
Katsurada, M.: Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(3), 635–657 (1990)
Katsurada, M.: Charge simulation method using exterior mapping functions. Jpn. J. Ind. Appl. Math. 11(1), 47–61 (1994)
Katsurada, M.: A mathematical study of the charge simulation method by use of peripheral conformal mappings. Mem. Inst. Sci. Tech. Meiji Univ. 37(8), 195–212 (1998)
Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35(3), 507–518 (1988)
Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31(1), 123–137 (1996)
Kołodziej, J.A., Mierzwiczak, M.: Transient heat conduction by different version of the method of fundamental solutions—a comparison study. Comput. Assist. Mech. Eng. Sci. 17(1), 75–88 (2010)
Kołodziej, J.A., Grabski, J.K.: Application of the method of fundamental solutions and the radial basis functions for viscous laminar flow in wavy channel. Eng. Anal. Bound. Elem. 57, 58–65 (2015)
Li, M., Chen, C.S., Karageorghis, A.: The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions. Comput. Math. Appl. 66(11), 2400–2424 (2013)
Li, M., Chen, C.S., Chu, C.C., Young, D.L.: Transient 3D heat conduction in functionally graded materials by the method of fundamental solutions. Eng. Anal. Bound. Elem. 45, 62–67 (2014)
Li, W., Li, M., Chen, C.S., Lu, X.: Compactly supported radial basis functions for solving high order partial differential equations in 3D. Eng. Anal. Bound. Elem. 55, 2–9 (2015)
Li, Z.-C.: The method of fundamental solutions for annular shaped domains. J. Comput. Appl. Math. 228(1), 355–572 (2009)
Li, Z.-C., Lee, M.-G., Chiang, J.Y., Liu, Y.P.: The Trefftz method using fundamental solutions for biharmonic equations. J. Comput. Appl. Math. 235(15), 4350–4367 (2011)
Li, Z.-C., Mathon, R., Sermer, P.: Boundary methods for solving elliptic problems with singularities and interfaces. SIAM J. Numer. Anal. 24(3), 487–498 (1987)
Lin, J., Chen, W., Chen, C.S.: A new scheme for the solution of reaction diffusion and wave propagation problems. Appl. Math. Model. 38(23), 5651–5664 (2014)
Murota, K.: On “invariance” of schemes in the fundamental solution method (Japanese). Inf. Process. Soc. Japan 34(3), 533–535 (1993)
Murota, K.: Comparison of conventional and “invariant” schemes of fundamental solutions method for annular domains. Jpn. J. Indust. Appl. Math. 12(1), 61–85 (1995)
Nishida, K.: Mathematical and numerical analysis of charge simulation method in 2-dimensional elliptic domains. Trans. Jpn. Soc. Ind. Appl. Math. 5(3), 185–198 (1995)
Ogata, H., Chiba, F., Ushijima, T.: A new theoretical error estimate of the method of fundamental solutions applied to reduced wave problems in the exterior region of a disk. J. Comput. Appl. Math. 235(12), 3395–3412 (2011)
Ogata, H., Katsurada, M.: Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region. Jpn. J. Indust. Appl. Math. 31(1), 231–262 (2014)
Ohe, T., Ohnaka, K.: Uniqueness and convergence of numerical solution of the Cauchy problem for the Laplace equation by a charge simulation method. Jpn. J. Indust. Appl. Math. 21(3), 339–359 (2004)
Reeve, T., Johansson, B.T.: The method of fundamental solutions for a time-dependent two-dimensional Cauchy heat conduction problem. Eng. Anal. Bound. Elem. 37(3), 569–578 (2013)
Sakajo, T., Amaya, Y.: Numerical construction of potential flows in multiply connected channel domains. Comput. Meth. Funct. Theory 11(2), 415–438 (2011)
Sakakibara, K.: Analysis of the dipole simulation method in Jordan regions with analytic boundaries. BIT Numer. Math. 56(4), 1369–1400 (2016)
Sun, Y.: Modified method of fundamental solutions for the Cauchy problem connected with the Laplace equation. Int. J. Comput. Math. 91(10), 2185–2198 (2014)
Sun, Y., Ma, F., Zhou, X.: An invariant method of fundamental solutions for the Cauchy problem in two-dimensional isotropic linear elasticity. J. Sci. Comput. 64(1), 197–215 (2015)
Wei, T., Zhou, Y.: Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions. Adv. Comput. Math. 33(4), 491–510 (2010)
Wen, J., Yamamoto, M., Wei, T.: Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem. Inverse Probl. Sci. Eng. 21(3), 485–499 (2013)
Yan, L., Yang, F.: Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems. Comput. Math. Appl. 67(8), 1507–1520 (2014)
Zhang, L., Li, Z.-C., Wei, Y., Chiang, J.Y.: Cauchy problems of Laplace’s equation by the methods of fundamental solutions and particular solutions. Eng. Anal. Bound. Elem. 37(4), 765–780 (2013)