Biểu diễn tiệm cận cho các nghiệm của một lớp phương trình vi phân phi tuyến bậc hai

Springer Science and Business Media LLC - Tập 67 - Trang 1447-1456 - 2016
O. R. Shlepakov1
1Mechnikov Odessa National University, Odessa, Ukraine

Tóm tắt

Chúng tôi thiết lập các biểu diễn tiệm cận cho các nghiệm của một lớp phương trình vi phân phi tuyến bậc hai với các phi tuyến biến đổi nhanh và thường xuyên.

Từ khóa


Tài liệu tham khảo

M. A. Belozerova, “Asymptotic properties of one class of solutions of essentially nonlinear second-order differential equations,” Mat. Stud., 29, No. 1, 52–62 (2008). M. O. Bilozerova, “Asymptotic representations of solutions of second-order differential equations with nonlinearities in a certain sense close to power nonlinearities,” Nauk. Visn. Cherniv. Univ., Issue 374, 34–43 (2008). M. A. Belozerova, “Asymptotic representations of solutions of nonautonomous second-order differential equations with nonlinearities close to power-type nonlinearities,” Nelin. Kolyvannya, 12, No. 1, 3–15 (2009); English translation: Nonlin. Oscillations, 12, No. 1, 1–14 (2009). V. M. Evtukhov and M. A. Belozerova, “Asymptotic representations of the solutions of essentially nonlinear nonautonomous secondorder differential equations,” Ukr. Mat. Zh., 60, No. 3, 310–331 (2008); English translation: Ukr. Math. J., 60, No. 3, 357–383 (2008). V. M. Evtukhov and N. G. Drik, “Asymptotic representations of solutions of one class of nonlinear nonautonomous second-order differential equations,” Soobshch. Akad. Nauk. Gruz. SSR, 133, No. 1, 29–32 (1989). V. M. Evtukhov and N. G. Drik, “Asymptotic behavior of solutions of a second order nonlinear differential equation,” Georg. Math. J., 3, No. 2, 101–120 (19960. V. M. Evtukhov, V. I. Vishnyakov, and G. S. Dragan, “Nonlinear Poisson–Boltzmann equation in spherical symmetry,” Phys. Rev., 76, No. 3, 1–5 (2007). V. M. Evtukhov and V. M. Khar’kov, “Asymptotic representations of solutions of essentially nonlinear second-order differential equations,” Differents. Uravn., 43, No. 9, 1311–1323 (2007). V. M. Evtukhov and A. M. Samoilenko, “Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities,” Differents. Uravn., 47, No. 5, 628–650 (2011). V. M. Evtukhov and O. R. Shlepakov, “Asymptotic representations of solutions of essentially nonlinear systems of ordinary differential equations with regularly and rapidly varying nonlinearities,” Ukr. Mat. Zh., 64, No. 9, 1165–1185 (2012); English translation: Ukr. Math. J., 64, No. 9, 1326–1349 (2013). V. M. Evtukhov, Asymptotic Representations of Solutions of Nonautonomous Ordinary Differential Equations [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Kiev (1998). S. P. Hastings and A. B. Poor, “A nonlinear problem from combustion theory: Linan’s problem,” SIAM J. Math. Anal., 14, No. 3, 425–430 (1983). S. P. Hastings and A. B. Poor, “Linan’s problem from combustion theory. Pt II,” SIAM J. Math. Anal., 16, No. 2, 331–340 (1985). V. Maric, Regular Variation and Differential Equations, Springer, Berlin (2000). E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).