Asymptotic Expansion of D-Risks for Hypothesis Testing in Bernoulli Scheme

Lobachevskii Journal of Mathematics - Tập 39 Số 3 - Trang 413-423 - 2018
Artem Zaikin1
1Department of Mathematical Statistics, Kazan Federal University, Institute of Computational Mathematics and Information Technologies, Kazan, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

I. N. Volodin and A. A. Novikov, “Statistical estimators with asymptotically minimum d-risk,” Theory Probab. Appl. 38, 118–128 (1993).

I. N. Volodin and A. A. Novikov, “Asymptotics of the necessary sample size for D-guaranteed discrimination of two close hypotheses,” Sov. Math. 27 (11), 67–178 (1983).

S. V. Simushkin and R. F. Salimov, “Asymptotically most precise two-sided confidence intervals for mean in Normal-Normal model,” Uch. Zap. Kazan. Univ. 152, 205–218 (2010).

I. N. Volodin and A. A. Novikov, “Local asymptotic efficiency of a sequential probability ratio test for dguarantee discrimination of composite hypotheses,” Theory Probab. Appl. 43, 269–281 (1999).

A. A. Novikov, “Asymptotic optimality of the sequential d-guaranty test,” Theory Probab. Appl. 32, 358–361 (1987).

J. K. Ghosh, B. K. Sinha, and S. N. Joshi, “Expansions for posterior probability and integrated Bayes risk,” in Statistical Decision Theory and Related Topics III, Proceedings of the 3rd Purdue Symposium (Academic, New York, 1982), Vol. 1, pp. 403–456.

S. I. Gusev, “Asymptotic expansions that are connected with certain statistical estimates in the smooth case. II. Expansions of moments and of distributions,” Teor. Veroyatn. Prilozh. 21, 16–32 (1976).

R. A. Johnson, “Asymptotic expansions associated with posterior distributions,” Ann. Math. Stat. 41, 851–864 (1970).

A. A. Zaikin, “On asymptotic expansion of posterior distribution,” Lobachevskii J. Math. 37, 515–525 (2016).

A. A. Zaikin, “Asymptotic expansion of posterior distribution of parameter centered by n-consistent estimate,” Zap. Nauch. Sem. SPb. Otd. Mat. Inst. Steklova POMI 454, 121–150 (2016).

S. V. Simushkin, “Optimal d-guaranteed procedures of testing two hypotheses,” Available from VINITI No. 5547-81 (1981).

I. N. Volodin and A. A. Novikov, “Asymptotics of necessary sample size for guaranteed parametric hypotheses testing,” Issled. Prikl.Mat. 21, 3–41 (1999) [in Russian].

D. M. Chibisov, “An asymptotic expansion for the distribution of a statistic admitting an asymptotic epansion,” Theory Probab. Appl. 17, 620–630 (1972).

A. A. Zaikin, “Defect of the size of nonrandomized test and randomization effect on decreasing of the necessary sample size in testing the Bernoulli success probability,” Theory Probab. Appl. 59, 466–480 (2015).

J. E. Kolassa and P. McCullagh, “Edgeworth series for lattice distributions,” Ann. Stat. 18, 981–985 (1990).

R. N. Bhattachariya and R. R. Rao, Normal Approximation and Asymptotic Expansions (SIAM, Philadelphia, 1986).