Asymptotic Completeness for a Renormalized Nonrelativistic Hamiltonian in Quantum Field Theory: The Nelson Model
Tóm tắt
Scattering theory for the Nelson model is studied. We show Rosen estimates and we prove the existence of a ground state for the Nelson Hamiltonian. Also we prove that it has a locally finite pure point spectrum outside its thresholds. We study the asymptotic fields and the existence of the wave operators. Finally we show asymptotic completeness for the Nelson Hamiltonian.
Tài liệu tham khảo
Amrein, W. O., Boutet de Monvel, A. and Georgescu, V.: Commutator Methods and Spectral Theory of N-Body Hamiltonian, Birkhäuser, Basel, 1996.
Arai, A. and Hirokawa, M.: On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal. 151 (1997), 455-503.
Berezin, F. A.: The Method of Second Quantization, Academic Press, New York, 1966.
Bach, V., Fröhlich, J. and Sigal, I. M.: Quantum electrodynamics of confined nonrelativistic particles, Adv. Math. 137 (1998), 299-395.
Bach, V., Fröhlich, J., Sigal, I. M. and Soffer, A.: Positive commutators and spectrum of Pauli-Fierz Hamiltonian of atoms and molecules, Comm. Math. Phys. 207 (1999), 557-587.
Brattelli, O. and Robinson, D.: Operator Algebras and Quantum Statistical Mechanics, Springer, Berlin, 1981.
Baez, J. C., Segal, I. E. and Zhou, Z.: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Ser. in Phys., Princeton Univ. Press, 1992.
Cannon, J. T.: Quantum field theoretic properties of a model of Nelson: Domain and eigenvector stability for perturbed linear operators, J. Funct. Anal. 8 (1971), 101-152.
Cycon, H. L., Froese, R., Kirsch, W. and Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer, New York, 1987.
Dereziński, J. and Gérard, C.: Scattering Theory of Classical and Quantum N-particle Systems, Texts and Monogr. in Phys., Springer, New York, 1997.
Dereziński, J. and Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (1999), 383-450.
Dereziński, J. and Gérard, C.: Spectral and scattering theory of spatially cut-off P.(ø)2 Hamiltonians, to appear in Comm. Math. Phys.
Dereziński, J. and Jaksic, V.: Spectral theory of Pauli-Fierz Hamiltonians I, Preprint.
Fröhlich, J.: Existence of dressed electron states in a class of persistent models, Fortschr. Phys. 22 (1974), 159-198.
Graf, G. M.: Asymptotic completeness for N-body short-range quantum systems: A new proof, Comm. Math. Phys. 132 (1990), 73-101.
Glimm, J. and Jaffe, A.: Collected Papers, Quantum Field Theory and Statistical Mechanics Expostions, Vol. I, Birkhäuser, Basel, 1985.
Gross, E. P.: Ann. Phys. 19 (1962), 219-233.
Greenberg, O. W. and Schweber, S. S.: Nuovo Cimento 8 (1958), 378.
Hø egh-Krohn, R.: Asymptotic limits in some models of quantum field theory, J. Math. Phys. 9 (1968), 2075-2079.
Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1981), 519-567.
Nelson, E.: Interaction of non-relativistic particles with a quantized scalar field, J. Math. Phys. 5 (1964), 1190-1197.
Rosen, L.: The (Φ2n)2 quantum field theory: Higher order estimates, Comm. Pure Appl. Math. 24 (1971), 417-457.
Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, Vols I and II, 1976, Vol. III, 1979, Vol. IV, 1978, Academic Press, London.
Sigal, I. M. and Soffer, A.: The N-particle scattering problem: Asymptotic completeness for short-range systems, Ann. of Math. 126 (1987), 35-108.