Asymptotic Analysis of Resonances in Nonlinear Vibrations of the 3-dof Pendulum

Differential Equations and Dynamical Systems - Tập 21 Số 1-2 - Trang 123-140 - 2013
Jan Awrejcewicz1, R. Starosta2, Grażyna Sypniewska-Kamińska2
1Department of Automation and Biomechanics, Technical University of Łódź, Lodz, Poland
2Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Awrejcewicz J., Kudra G., Wasilewski G.: Chaotic zones in triple pendulum dynamics observed experimentally and numerically. Mech. Mater. 9, 1–17 (2008)

Awrejcewicz J., Kudra G., Wasilewski G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dyn. 50, 755–776 (2007)

Awrejcewicz J., Supeł B., Lamarque C-H., Kudra G., Wasilewski G., Olejnik P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. Int. J. Bifurc. Chaos 18(10), 2883–2915 (2008)

Miles J.: Resonance and symmetry braking for the pendulum. Phys. D Nonlinear Phenom. 31(2), 252–268 (1988)

Rowan S., Twyford S.M., Hutchins R., Kovalik J., Logan J.E., McLaren A.C., Robertson N.A.: Q-Factor measurements on prototype fused quartz pendulum suspensions for use in gravitational wave detectors. Phys. Lett. 233(4-6), 303–308 (1997)

Chacon R.: Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses. J. Math. Phys. 38, 1477–1484 (1977)

Broer M.W., Hoveijn I., Noort van M., Vegter G.: The inverted pendulum: a singularity theory approach. J. Differ. Equ. 157, 120–149 (1999)

Hemmer P.R., Prentiss M.G.: Coupled-pendulum model of the stimulated resonance Raman effect. J. Opt. Soc. Am. B 5(8), 1613–1623 (1988)

D’Humieres D., Beasley M.R., Huberman B.A., Libchaber A.: Chaotic states and routes to chaos in the forced pendulum. Phys Rev. 26(6), 3483–3496 (1982)

Skeldon A.C.: Dynamics of a parametrically excited double pendulum. Phys. D: Nonlinear Phenom. 75(4), 541–558 (1994)

Leonov G.A., Smirnova V.B.: Stability and oscillations of solutions of integro-differential equations of pendulum-like systems. Math. Nachr. 177, 157–181 (1996)

Cevalei O., Ertas A.: Pendulum as vibration absorber for flexible structures: experiments and theory. J. Vibr. Acoust. 118(4), 558–567 (1996)

Yu P., Bi Q.: Analysis on nonlinear dynamics and bifurcations of a double pendulum. J. Sound Vibr. 217(4), 691–736 (1998)

Yang W., Zhang Z., Shen R.: Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mech. Res. Commun. 34(3), 260–266 (2007)

Cicek I., Ertas A.: Experimental investigation of beam-tip mass and pendulum system under random excitation. Mech. Syst. Sig. Process. 16(6), 1059–1079 (2002)

Anderson C.W.: Learning to control and inverted pendulum using neutral networks. Control Syst. Mag. IRRR 9(3), 31–37 (1989)

Furuta K., Yamakita M., Kobayashi S.: Swing-up control of inverted pendulum using pseudo-state feedback. J. Syst. Control Eng. 206, 263–269 (1992)

Chung C.C., Hauser J.: Nonlinear control of swing pendulum. Automatica 31(6), 851–862 (1995)

Wei W.F., Dayawausa W.P., Levine W.S.: Nonlinear controller for an inverted pendulum having restricted travel. Automatica 31(6), 841–850 (1995)

Han Y.S., Yuta S.: Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot. Robot Autonom. Syst 17, 65–80 (1996)

Lin Z., Saberi A., Gutmann M., Shamash Y.A.: Linear controller for an inverted pendulum having restricted travel: A high-and-low gain approach. Automatica 32(6), 933–937 (1996)

Pathak K., Franch J., Agrawal S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)

Muskinja N., Tovornik B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Indus. Electron. 53(2), 631–639 (2006)

Yabuno H., Endo Y., Aoshima N.: Stabilization of 1/3-order subharmonic resonance using an autoparametric vibration absorber. J. Vibr. Acoust. 121(3), 309–316 (1999)

Alasty A., Salarien H.: Nonlinear feedback control of chaotic pendulum in presence of saturation effect. Chaos Solit. Fract. 31(2), 292–304 (2007)

Mori S., Nisihara H., Furuta K.: Control of unstable mechanical systems: control of pendulum. Int. J. Control 23, 673–692 (1976)

Chung C.C., Hauser J.: Nonlinear control of a swinging pendulum. Automatica 31, 851–862 (1995)

Shirieav A.S., Progromsky A., Ludvigsen H., Egeland O.: On global properties of passivity-based control of an invert pendulum. Int. J. Robust Nonlinear Control 10, 283–300 (2000)

Shirieav A.S., Egeland O., Ludvigsen H., Fradkov A.: VSS-version of energy-based control of swinging up of pendulum. Syst. Control Lett. 44, 45–56 (2001)

Shiriaev A.S., Ludvigsen H., Egeland O.: Swinging up the spherical pendulum via stabilization of its first integrals. Automatica 40(1), 73–85 (2004)

Furuta K., Ochiai T., Ono N.: Attitude control of a triple inverted pendulum. Int. J. Control 39, 1351–1365 (1984)

Spong M.W.: The swingup control problem for the acrobot. IEEE Control Syst. Mag. 15, 72–79 (1995)

Fantoni I., Lozano R., Spong M.W.: Energy based control of the pendubot. IEEE Trans. Autom. Control AC 45, 725–729 (2000)

Hoshino T., Kawai H., Furuta K.: Stabilization of the triple spherical inverted pendulum-a simultaneous design approach. Autommatisierungstechnik 48, 577–587 (2000)

Spong M.W., Corke P., Lozano R.: Nonlinear control of the inertia wheel pendulum. Automatica 37, 1845–1851 (2001)

Zhao J., Spong M.W.: Hybrid control for global stabilization of the cart-pendulum system. Automatica 37, 1845–1851 (2001)

Nayfeh A.H.: Perturbation Methods. Wiley, New York (1973)

Shivamoggi B.K.: Perturbation Method for Differential Equations. Birkhauser, Boston (2002)

Sado D., Gajos K.: Analysis of vibrations of three-degree-of-freedom dynamical system with double pendulum. J. Theor. Appl. Mech. 46(1), 141–156 (2008)

Starosta, R., Sypniewska-Kamińska, G., Awrejcewicz, J.: Resonances in kinematically driven nonlinear spring pendulum. In: DSTA 11th Conference, pp 103–108 (2011)