Asymmetry Models Based on Non-integer Scores for Square Contingency Tables
Tóm tắt
Từ khóa
Tài liệu tham khảo
Graubard, B.I., Korn, E.L.: Choice of column scores for testing independence in ordered $$2 \times k$$ contingency tables. Biometrics 43, 471–476 (1987)
Senn, S.: Drawbacks to noninteger scoring for ordered categorical data. Biometrics 63, 296–299 (2007)
Gautam, S.: Test for linear trend in $$2 \times k$$ ordered tables with open-ended categories. Biometrics 53, 1163–1169 (1997)
Aktas, S., Wu, S.: Marginal homogeneity model for ordered categories with open ends in square contingency tables. REVSTAT-Statistical Journal 13(3), 233–243 (2015)
Iki, K., Tahata, K., Tomizawa, S.: Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories. Austrian Journal of Statistics 38, 183–192 (2009)
Bagheban, A.A., Zayeri, F.: A generalization of the uniform association model for assessing rater agreement in ordinal scales. Journal of Applied Statistics 37, 1265–1273 (2010)
Agresti, A.: A simple diagonals-parameter symmetry and quasi-symmetry model. Statistics & Probability Letters 1, 313–316 (1983)
Bowker, A.H.: A test for symmetry in contingency tables. Journal of the American Statistical Association 43, 572–574 (1948)
Kateri, M., Agresti, A.: A class of ordinal quasi-symmetry models for square contingency tables. Statistics & Probability Letters 77(6), 598–603 (2007)
Saigusa, Y., Tahata, K., Tomizawa, S.: Orthogonal decomposition of symmetry model using the ordinal quasi-symmetry model based on f-divergence for square contingency tables. Statistics & Probability Letters 101, 33–37 (2015)
Ando, S.: Asymmetry models based on ordered score and separations of symmetry model for square contingency tables. Biometrical Letters 58(1), 27–39 (2021)