Asymmetric radical cyclopropanation of dehydroaminocarboxylates: Stereoselective synthesis of cyclopropyl α-amino acids

Chem - Tập 7 - Trang 1588-1601 - 2021
Wan-Chen Cindy Lee1, Duo-Sheng Wang1, Congzhe Zhang1, Jingjing Xie1, Bo Li1, X. Peter Zhang1
1Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA

Tài liệu tham khảo

For selected books, see: Zard, 2003 Curran, 2008 Chatgilialoglu, 2012 Zard, 2008, Recent progress in the generation and use of nitrogen-centred radicals, Chem. Soc. Rev., 37, 1603, 10.1039/b613443m Zard, 2008, Recent progress in the generation and use of nitrogen-centred radicals, Chem. Soc. Rev., 37, 1603, 10.1039/b613443m Narayanam, 2011, Visible light photoredox catalysis: applications in organic synthesis, Chem. Soc. Rev., 40, 102, 10.1039/B913880N Quiclet-Sire, 2011, Fun with radicals: some new perspectives for organic synthesis, Pure Appl. Chem., 83, 519, 10.1351/PAC-CON-10-08-07 Prier, 2013, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis, Chem. Rev., 113, 5322, 10.1021/cr300503r Studer, 2016, Catalysis of radical reactions: a radical chemistry perspective, Angew. Chem. Int. Ed. Engl., 55, 58, 10.1002/anie.201505090 For selected reviews, see: Bar, 2003, Stereoselective radical reactions, Chem. Soc. Rev., 32, 251, 10.1039/b111414j Sibi, 2003, Enantioselective radical processes, Chem. Rev., 103, 3263, 10.1021/cr020044l Brimioulle, 2015, Enantioselective catalysis of photochemical reactions, Angew. Chem. Int. Ed. Engl., 54, 3872, 10.1002/anie.201411409 For selected examples on approaches to controlling radical reactivity and stereoselectivity, see: Du, 2014, A dual-catalysis approach to enantioselective [2+2] photocycloadditions using visible light, Science, 344, 392, 10.1126/science.1251511 Huo, 2014, Asymmetric photoredox transition-metal catalysis activated by visible light, Nature, 515, 100, 10.1038/nature13892 Kainz, 2016, Asymmetric copper-catalyzed C–N cross-couplings induced by visible light, Science, 351, 681, 10.1126/science.aad8313 Zhang, 2016, Enantioselective cyanation of benzylic C–H Bonds via copper-catalyzed radical relay, Science, 353, 1014, 10.1126/science.aaf7783 Kern, 2017, Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals, Nat. Chem., 9, 1198, 10.1038/nchem.2841 Morrill, 2018, Biocatalytic conversion of cyclic ketones bearing α-quaternary stereocenters into lactones in an enantioselective radical approach to medium-sized carbocycles, Angew. Chem. Int. Ed. Engl., 57, 3692, 10.1002/anie.201800121 Proctor, 2018, Catalytic enantioselective Minisci-type addition to heteroarenes, Science, 360, 419, 10.1126/science.aar6376 Huang, 2019, SmI2-catalysed cyclization cascades by radical relay, Nat. Catal., 2, 211, 10.1038/s41929-018-0219-x Huo, 2020, Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles, Science, 367, 559, 10.1126/science.aaz3855 Nakafuku, 2020, Enantioselective radical C–H amination for the synthesis of β-amino alcohols, Nat. Chem., 12, 697, 10.1038/s41557-020-0482-8 For selected reviews and highlights on Co(II)-based MRC, see: Lu, 2011, Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions, Chem. Soc. Rev., 40, 1899, 10.1039/C0CS00070A Pellissier, 2014, Enantioselective cobalt-catalyzed transformations, Chem. Rev., 114, 2775, 10.1021/cr4004055 Huang, 2019, Catalytic cascade reactions by radical relay, Chem. Soc. Rev., 48, 4626, 10.1039/C8CS00947C Demarteau, 2019, Organocobalt complexes as sources of carbon-centered radicals for organic and polymer chemistries, Chem. Rev., 119, 6906, 10.1021/acs.chemrev.8b00715 Singh, 2019, Metalloporphyrin catalyzed C–H amination, ACS Catal, 9, 3604, 10.1021/acscatal.9b00009 For selected examples of Ti(III)-based radical processes, see: Nugent, 1988, Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins, J. Am. Chem. Soc., 110, 8561, 10.1021/ja00233a051 Rajanbabu, 1994, Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis, J. Am. Chem. Soc., 116, 986, 10.1021/ja00082a021 Gansäuer, 2015, Cationic titanocene(III) complexes for catalysis in single-electron steps, Angew. Chem. Int. Ed. Engl., 54, 7003, 10.1002/anie.201501955 Funken, 2016, General, highly selective synthesis of 1,3- and 1,4-difunctionalized building blocks by regiodivergent epoxide opening, Angew. Chem. Int. Ed. Engl., 55, 12030, 10.1002/anie.201606064 Hao, 2017, Radical redox-relay catalysis: formal [3+2] cycloaddition of N-acylaziridines and alkenes, J. Am. Chem. Soc., 139, 12141, 10.1021/jacs.7b06723 Yao, 2019, Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis, Science, 364, 764, 10.1126/science.aaw3913 Ye, 2019, Bimetallic radical redox-relay catalysis for the isomerization of epoxides to allylic alcohols, J. Am. Chem. Soc., 141, 9548, 10.1021/jacs.9b04993 For selected examples of metalloradical-mediated radical processes, see: Wayland, 1994, Living radical polymerization of acrylates by organocobalt porphyrin complexes, J. Am. Chem. Soc., 116, 7943, 10.1021/ja00096a080 Zhang, 1994, Rhodium(II) porphyrin bimetalloradical complexes preparation enhanced reactivity CH4 and H2, J. Am. Chem. Soc., 116, 7897, 10.1021/ja00096a057 Chan, 2008, Carbon–carbon bond activation of 2,2,6,6-tetramethyl-piperidine-1-oxyl by a RhII metalloradical: a combined experimental and theoretical study, J. Am. Chem. Soc., 130, 2051, 10.1021/ja078157f Chan, 2010, Metalloradical-catalyzed aliphatic carbon−carbon activation of cyclooctane, J. Am. Chem. Soc., 132, 6920, 10.1021/ja101586w Li, 2012, Evidence for formation of a Co–H bond from (H2O)2Co(dmgBF2)2 under H2: application to radical cyclizations, J. Am. Chem. Soc., 134, 14662, 10.1021/ja306037w Kuo, 2015, Direct generation of oxygen-stabilized radicals by H⋅ transfer from transition metal hydrides, J. Am. Chem. Soc., 137, 1036, 10.1021/ja511883b Roy, 2019, Iron(II)-based metalloradical activation: switch from traditional click chemistry to denitrogenative annulation, Angew. Chem. Int. Ed. Engl., 58, 11439, 10.1002/anie.201904702 Das, 2020, Iron-catalyzed amination of strong aliphatic C(sp3)-H bonds, J. Am. Chem. Soc., 142, 16211, 10.1021/jacs.0c07810 Dzik, 2010, Carbene radicals’ in Co(II)(por)-catalyzed olefin cyclopropanation, J. Am. Chem. Soc., 132, 10891, 10.1021/ja103768r Belof, 2011, Characterization of tunable radical metal–carbenes: key intermediates in catalytic cyclopropanation, Organometallics, 30, 2739, 10.1021/om2001348 Lu, 2011, Experimental evidence for cobalt(III)-carbene radicals: key intermediates in cobalt(II)-based metalloradical cyclopropanation, J. Am. Chem. Soc., 133, 8518, 10.1021/ja203434c Chen, 2004, Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation, J. Am. Chem. Soc., 126, 14718, 10.1021/ja044889l Caselli, 2006, Chiral porphyrin complexes of cobalt(II) and ruthenium(II) in catalytic cyclopropanation and amination reactions, Inorg. Chim. Acta, 359, 2924, 10.1016/j.ica.2005.11.020 Chen, 2007, Cobalt-catalyzed asymmetric cyclopropanation of electron-deficient olefins, J. Am. Chem. Soc., 129, 12074, 10.1021/ja074613o Zhu, 2008, Cobalt-catalyzed asymmetric cyclopropanation with diazosulfones: rigidification and polarization of ligand chiral environment via hydrogen bonding and cyclization, J. Am. Chem. Soc., 130, 5042, 10.1021/ja7106838 Fantauzzi, 2008, Asymmetric cyclopropanation of olefins catalyzed by chiral cobalt(II)-binaphthyl porphyrins, Organometallics, 27, 6143, 10.1021/om800556v Zhu, 2010, A general and efficient cobalt(II)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates, J. Am. Chem. Soc., 132, 12796, 10.1021/ja1056246 Xu, 2011, Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by Co(II)-based metalloradical catalysis: iterative approach for development of new-generation catalysts, J. Am. Chem. Soc., 133, 15292, 10.1021/ja2062506 Reddy, 2016, Cobalt(II) porphyrin-catalyzed intramolecular cyclopropanation of N-alkyl indoles/pyrroles with Alkylcarbene: efficient synthesis of polycyclic N-heterocycles, Angew. Chem. Int. Ed. Engl., 55, 1810, 10.1002/anie.201506418 Wang, 2017, Asymmetric radical cyclopropanation of alkenes with in situ-generated donor-substituted diazo reagents via Co(II)-based metalloradical catalysis, J. Am. Chem. Soc., 139, 1049, 10.1021/jacs.6b11336 Chirila, 2017, Diastereoselective radical-type cyclopropanation of electron-deficient alkenes mediated by the highly active cobalt(II) tetramethyltetraaza[14]annulene catalyst, ChemCatChem, 9, 1413, 10.1002/cctc.201601568 Roy, 2018, Cobalt(II)-based metalloradical activation of 2-(diazomethyl)pyridines for radical transannulation and cyclopropanation, Angew. Chem. Int. Ed. Engl., 57, 2238, 10.1002/anie.201711209 Burk, 1993, Preparation and use of C2-symmetric bis(phospholanes): production of.alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions, J. Am. Chem. Soc., 115, 10125, 10.1021/ja00075a031 Burk, 1995, Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide, J. Am. Chem. Soc., 117, 8277, 10.1021/ja00136a029 Weis, 2006, Self-assembly of bidentate ligands for combinatorial homogeneous catalysis: asymmetric rhodium-catalyzed hydrogenation, J. Am. Chem. Soc., 128, 4188, 10.1021/ja058202o Gridnev, 2008, Asymmetric hydrogenation catalyzed by a rhodium complex of (R)-(tert-butylmethylphosphino)(di-tert-butylphosphino)methane: scope of enantioselectivity and mechanistic study, J. Am. Chem. Soc., 130, 2560, 10.1021/ja076542z Viehe, 1979, Capto-dative substituent effects in syntheses with radicals and radicophiles [new synthetic methods (32)], Angew. Chem. Int. Ed. Engl., 18, 917, 10.1002/anie.197909171 Viehe, 1985, The captodative effect, Acc. Chem. Res., 18, 148, 10.1021/ar00113a004 Vähätalo, 1957, A new cyclic alpha-aminocarboxylic acid in berries of cowberry, Acta Chem. Scand., 11, 741, 10.3891/acta.chem.scand.11-0741 Burroughs, 1957, 1-aminocyclopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples, Nature, 179, 360, 10.1038/179360a0 Adams, 1979, Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA, 76, 170, 10.1073/pnas.76.1.170 Benedetti, 1989, Structural versatility of peptides containing Cα,α-dialkylated glycines. An X-ray diffraction study of six 1-aminocyclopropane-1-carboxylic acid rich peptides, Int. J. Biol. Macromol., 11, 353, 10.1016/0141-8130(89)90007-X Brackmann, 2007, Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids1-aminocyclopropanecarboxylic acid and other 2,3-methanoamino acids, Chem. Rev., 107, 4493, 10.1021/cr078376j Kurosawa, 2001, SW-163C and E, novel antitumor depsipeptides produced by Streptomyces sp. I. Taxonomy, fermentation, isolation and biological activities, J. Antibiot. (Tokyo), 54, 615, 10.7164/antibiotics.54.615 Nakaya, 2007, Relative and absolute configuration of antitumor agent SW-163D, Biosci. Biotechnol. Biochem., 71, 2969, 10.1271/bbb.70371 Stewart, 1981, Peptide synthesis with 1-aminocyclopropane-1-carboxylic acid, Aust. J. Chem., 34, 2431, 10.1071/CH9812431 Mapelli, 1986, Synthesis of four diastereomeric enkephalins incorporating cyclopropyl phenylalanine, Int. J. Pept. Protein Res., 28, 347, 10.1111/j.1399-3011.1986.tb03265.x Ghosh, 1992, One pot amide/peptide synthesis via two redox reactions, Tetrahedron Lett, 33, 805, 10.1016/S0040-4039(00)77720-3 Stammer, 1990, Cyclopropane amino acids, Tetrahedron, 46, 2231, 10.1016/S0040-4020(01)82005-6 Burgess, 1995, Comparison of the effects of (2S,3S)-2,3-methanomethionine, (2R,3R)-2,3-methanomethionine, and (2R,3R)-2,3-methanophenylalanine on the conformations of small peptides, J. Am. Chem. Soc., 117, 3808, 10.1021/ja00118a017 Jiménez, 2003, Cyclopropane analogue of valine: influence of side chain orientation on peptide folding, Tetrahedron Lett, 44, 3147, 10.1016/S0040-4039(03)00514-8 Anisimova, 2002, Catalytic cyclopropanation of Alkyl 2-Allyl-2-acetylaminomalonate and methyl N-(acetyl)(phenyl)dehydroalanine with alkyl diazoacetates, Russ. J. Gen. Chem., 72, 4 Adams, 2003, Diastereoselective synthesis of cyclopropane amino acids using diazo compounds generated in situ, J. Org. Chem., 68, 9433, 10.1021/jo035060c Mykhailiuk, 2008, A convenient route to trifluoromethyl-substituted cyclopropane derivatives, Synthesis, 1757 Aggarwal, 2001, Catalytic cyclopropanation of alkenes using diazo compounds generated in situ. A novel route to 2-arylcyclopropylamines, Org. Lett., 3, 2785, 10.1021/ol0164177 Allouche, 2018, Iron-catalyzed synthesis of cyclopropanes by in situ generation and decomposition of electronically diversified diazo compounds, Chem. Commun. (Camb), 54, 13256, 10.1039/C8CC07060A Doyle, 1986, Electrophilic metal carbenes as reaction intermediates in catalytic reactions, Acc. Chem. Res., 19, 348, 10.1021/ar00131a004 Doyle, 1986, Catalytic methods for metal carbene transformations, Chem. Rev., 86, 919, 10.1021/cr00075a013 Doyle, 1998, Recent advances in asymmetric catalytic metal carbene transformations, Chem. Rev., 98, 911, 10.1021/cr940066a Roda, 2015, Cyclopropanation using flow-generated diazo compounds, Org. Biomol. Chem., 13, 2550, 10.1039/C5OB00019J Zhu, 2016, Transition- metal-free cyclopropanation of 2-aminoacrylates with N-tosylhydrazones: a general route to cyclopropane α-amino acid with contiguous quaternary carbon centers, Org. Lett., 18, 1470, 10.1021/acs.orglett.6b00416 Chen, 2017, Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: practical and facile access to CP-866,087, Org. Biomol. Chem., 15, 1228, 10.1039/C6OB02137A Aggarwal, 2001, Application of chiral sulfides to catalytic asymmetric aziridination and cyclopropanation with in situ generation of the diazo compound, Angew. Chem. Int. Ed. Engl., 40, 1433, 10.1002/1521-3773(20010417)40:8<1433::AID-ANIE1433>3.0.CO;2-E Aggarwal, 2004, Catalytic, asymmetric sulfur Ylide-mediated epoxidation of carbonyl compounds: scope, selectivity, and applications in synthesis, Acc. Chem. Res., 37, 611, 10.1021/ar030045f Fulton, 2005, The use of Tosylhydrazone salts as a safe alternative for handling diazo compounds and their applications in organic synthesis, Eur. J. Org. Chem., 1479, 10.1002/ejoc.200400700 Davies, 1996, Asymmetric cyclopropanations by rhodium(II) N -(arylsulfonyl)prolinate catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Practical enantioselective synthesis of the four stereoisomers of 2-phenylcyclopropan-1-amino acid, J. Am. Chem. Soc., 118, 6897, 10.1021/ja9604931 Wurz, 2004, An expedient and practical method for the synthesis of a diverse series of cyclopropane α-amino acids and amines, J. Org. Chem., 69, 1262, 10.1021/jo035596y Moreau, 2005, Expedient synthesis of cyclopropane α-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate, J. Am. Chem. Soc., 127, 18014, 10.1021/ja056192l Lindsay, 2009, Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane alpha-amino acids, J. Am. Chem. Soc., 131, 16383, 10.1021/ja9044955 Lindsay, 2011, Asymmetric Rh(II)- catalyzed cyclopropanation of alkenes with diacceptor diazo compounds: p-methoxyphenyl ketone as a general stereoselectivity controlling group, J. Am. Chem. Soc., 133, 8972, 10.1021/ja201237j Moreau, 2012, Catalytic asymmetric synthesis of nitrocyclopropane carboxylates, Tetrahedron, 68, 3487, 10.1016/j.tet.2011.05.113 Jin, 2013, Effective synthesis of chiral N-fluoroaryl aziridines through enantioselective aziridination of alkenes with fluoroaryl azides, Angew. Chem. Int. Ed. Engl., 52, 5309, 10.1002/anie.201209599 Witvrouw, 1999, Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives, Arch. Pharm. (Weinheim), 332, 163, 10.1002/(SICI)1521-4184(19995)332:5<163::AID-ARDP163>3.0.CO;2-2 Pinto, 1996, Novel, selective mechanism-based inhibitors of the herpes proteases, Bioorg. Med. Chem. Lett., 6, 2467, 10.1016/0960-894X(96)00456-8 Zhu, 2015, Brine-stabilized 2,2,2-trifluorodiazoethane and its application in the synthesis of CF3–substituted cyclopropane α-amino acids, Org. Lett., 17, 3442, 10.1021/acs.orglett.5b01450