Asymmetric catalytic 1,3-dipolar cycloaddition of α-diazoesters for synthesis of 1-pyrazoline-based spirochromanones and beyond

Science in China Series B: Chemistry - Tập 64 - Trang 1355-1360 - 2021
Peng Zhao1, Zegong Li1, Jun He1, Xiaohua Liu1, Xiaoming Feng1
1Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China

Tóm tắt

A highly enantioselective 1,3-dipolar cycloaddition of α-substituted diazoesters with exocyclic enones was achieved with chiral scandium(III)/N,N’-dioxide complex as the catalyst. This protocol provided a facile and efficient route to optically active 1-pyrazoline-based spirochromanones and others with good outcomes (up to 97% yield, 98% ee with >95:5 dr). Moreover, enantioenriched 2-pyrazoline-based spirochromanones were also accessible by switching α-substituted diazoesters to α-diazoacetates. The further specific transformations of chiral pyrazoline-based spiro-compounds to spirocyclopropane derivatives were disclosed as well.

Tài liệu tham khảo

For selected review, see: (a) dos Santos MS, Oliveira MLV, Bernardino AMR, de Léo RM, Amaral VF, de Carvalho FT, Leon LL, Canto-Cavalheiro MM. Bioorg Med Chem Lett, 2011, 21: 7451–7454 Ruan BF, Zhu YZ, Liu WD, Song BA, Tian YP. Eur J Med Chem, 2014, 72: 46–51 Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M. Eur J Med Chem, 2016, 120: 170–201 Faria JV, Vegi PF, Miguita AGC, Dos Santos MS, Boechat N, Bernardino AMR. Bioorg Med Chem, 2017, 25: 5891–5903 Ansari A, Ali A, Asif M, Shamsuzzaman S. New J Chem, 2017, 41: 16–41 Qin N, Lu X, Liu Y, Qiao Y, Qu W, Feng F, Sun H. Eur J Med Chem, 2021, 210: 112960 For selected examples, see: (a) Crawford RJ, Dummel RJ, Mishra A. J Am Chem Soc, 1965, 87: 3023–3025 Crawford RJ, Mishra A. J Am Chem Soc, 1966, 88: 3963–3969 Crawford RJ, Erickson GL. J Am Chem Soc, 1967, 89: 3907–3908 Crawford RJ, Mishra A, Dummel RJ. J Am Chem Soc, 1966, 88: 3959–3963 Abe M, Tada S, Mizuno T, Yamasaki K. J Phys Chem B, 2016, 120: 7217–7226 Abe M, Hatano S. Pure Appl Chem, 2017, 89: 759–764 El Hajj A, Bougrine AJ, Le DM, Pasquet V, Delalu H. Reac Kinet Mech Cat, 2018, 124: 727–739 Alkorta I, Elguero J. J Heterocyclic Chem, 2021, 58: 1015–1028 For selected examples, see: (a) Zhu X, Li Z, Jin C, Xu L, Wu Q, Su W. Green Chem, 2009, 11: 163–165 Mahé O, Dez I, Levacher V, Brière JF. Angew Chem Int Ed, 2010, 49: 7072–7075 Mahé O, Dez I, Levacher V, Brière JF. Org Biomol Chem, 2012, 10: 3946–3954 Longhi K, Moreira DN, Marzari MRB, Floss VM, Bonacorso HG, Zanatta N, Martins MAP. Tetrahedron Lett, 2010, 51: 3193–3196 Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C. Molecules, 2007, 12: 1482–1495 Kangani M, Hazeri N, Mghsoodlou MT, Habibi-khorasani SM, Salahi S. Res Chem Intermed, 2015, 41: 2513–2519 Faisal M, Saeed A, Hussain S, Dar P, Larik FA. J Chem Sci, 2019, 131: 70–99 Zhao P, Zeng Z, Feng X, Liu X. Chin Chem Lett, 2021, 32: 132–135 For selected examples, see: (a) Molteni G, Ponti A, Orlandi M. New J Chem, 2002, 26: 1340–1345 Li SM, Tsai SE, Chiang CY, Chung CY, Chuang TJ, Tseng CC, Jiang WP, Huang GJ, Lin CY, Yang YC, Fuh MT, Wong FF. Bioorg Chem, 2020, 104: 104333 Molteni G. Heterocycles, 2020, 100: 1249–1259 García Ruano JL, Peromingo MT, Alonso M, Fraile A, Martín MR, Tito A. J Org Chem, 2005, 70: 8942–8947 M. Sakhautdinov I, M. Gumerov A, R. Batyrshin I, A. Fatykhov A, Yu. Suponitsky K, S. Yunusov M. Heterocycles, 2014, 89: 641–651 Baiju TV, Namboothiri INN. Chem Rec, 2017, 17: 939–955 For selected examples, see: (a) Attanasi OA, De Crescentini L, Favi G, Mantellini F, Mantenuto S, Nicolini S. J Org Chem, 2014, 79: 8331–8338 Chen B, Chu WD, Liu QZ. RSC Adv, 2019, 9: 1487–1490 Chen JR, Dong WR, Candy M, Pan FF, Jörres M, Bolm C. J Am Chem Soc, 2012, 134: 6924–6927 Attanasi OA, De Crescentini L, Favi G, Mantellini F, Mantenuto S, Nicolini S. J Org Chem, 2014, 79: 8331–8338 For selected examples, see: (a) Zhang DY, Shao L, Xu J, Hu XP. ACS Catal, 2015, 5: 5026–5030 Sibi M, Stanley L, Soeta T. Adv Synth Catal, 2006, 348: 2371–2375 Campbell NR, Sun B, Singh RP, Deng L. Adv Synth Catal, 2011, 353: 3123–3128 Thomson CJ, Barber DM, Dixon DJ. Angew Chem Int Ed, 2019, 58: 2469–2473 Müller S, List B. Angew Chem Int Ed, 2009, 48: 9975–9978 Mahé O, Dez I, Levacher V, Brière JF. Angew Chem Int Ed, 2010, 49: 7072–7075 For selected examples, see: (a) Wu L, Shi M. J Org Chem, 2010, 75: 2296–2301 Zhang C, Dong S, Zheng Y, He C, Chen J, Zhen J, Qiu L, Xu X. Org Biomol Chem, 2018, 16: 688–692 Li Y, Wang H, Su Y, Li R, Li C, Liu L, Zhang J. Org Lett, 2018, 20: 6444–6448 Zhao P, Wu S, Ke C, Liu X, Feng X. Chem Commun, 2018, 54: 9837–9840 Suga H, Furihata Y, Sakamoto A, Itoh K, Okumura Y, Tsuchida T, Kakehi A, Baba T. J Org Chem, 2011, 76: 7377–7387 Lee SI, Kim KE, Hwang GS, Ryu DH. Org Biomol Chem, 2015, 13: 2745–2749 Lee SI, Hwang GS, Ryu DH. J Am Chem Soc, 2013, 135: 7126–7129 For selected review, see: (a) Ye T, McKervey MA. Chem Rev, 1994, 94: 1091–1160 Zhang Y, Wang J. Chem Commun, 2009, 1: 5350–5361 Davies HML, Morton D. Chem Soc Rev, 2011, 40: 1857–1869 de Angelis A, Panish R, Fox JM. Acc Chem Res, 2016, 49: 115–127 Peña-López M, Beller M. Angew Chem Int Ed, 2017, 56: 46–48 Xia Y, Qiu D, Wang J. Chem Rev, 2017, 117: 13810–13889 For bioactive compounds with spiro-pyrazolines, see: (a) Wu S, Li Y, Xu G, Chen S, Zhang Y, Liu N, Dong G, Miao C, Su H, Zhang W, Sheng C. Eur J Med Chem, 2016, 115: 141–147 Amata E, Bland ND, Campbell RK, Pollastri MP. Tetrahedron Lett, 2015, 56: 2832–2835 Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur J Org Chem, 2015, 2015: 2030–2037 Adamus-Grabicka AA, Markowicz-Piasecka M, Cieślak M, Królewska-Golińska K, Hikisz P, Kusz J, Małecka M, Budzisz E. Molecules, 2020, 25: 1613–1638 For reviews on chiral N, N’-dioxides, see: (a) Liu XH, Lin LL, Feng XM. Acc Chem Res, 2011, 44: 574–587 Liu X, Lin L, Feng X. Org Chem Front, 2014, 1: 298–302 Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc Chem Res, 2017, 50: 2621–2631 Liu Y, Li W, Zhang J. Natl Sci Rev, 2017, 4: 326–358 Liu X, Dong S, Lin L, Feng X. Chin J Chem, 2018, 36: 791–797 Cao WD, Liu XH, Feng XM. Chin Sci Bull, 2020, 65: 2941–2951 Wang MY, Li W. Chin J Chem, 2021, 39: 969–984 For selected examples, see: (h) Li W, Wang J, Hu X, Shen K, Wang W, Chu Y, Lin L, Liu X, Feng X. J Am Chem Soc, 2010, 132: 8532–8533 Li W, Liu X, Hao X, Cai Y, Lin L, Feng X. Angew Chem Int Ed, 2012, 51: 8644–8647 Li W, Tan F, Hao X, Wang G, Tang Y, Liu X, Lin L, Feng X. Angew Chem Int Ed, 2015, 54: 1608–1611 Tan F, Liu X, Wang Y, Dong S, Yu H, Feng X. Angew Chem Int Ed, 2018, 57: 16176–16179 Tan F, Pu M, He J, Li J, Yang J, Dong S, Liu X, Wu YD, Feng X. J Am Chem Soc, 2021, 143: 2394–2402 Lin X, Tang Y, Yang W, Tan F, Lin L, Liu X, Feng X. J Am Chem Soc, 2018, 140: 3299–3305 Lin X, Tan Z, Yang W, Yang W, Liu X, Feng X. CCS Chem, 2021, 3: 1423–1433 Xu J, Zhong Z, Jiang M, Zhou Y, Liu X, Feng X. CCS Chem, 2020, 2: 1894–1902 Li TR, Duan SW, Ding W, Liu YY, Chen JR, Lu LQ, Xiao WJ. J Org Chem, 2014, 79: 2296–2302 Han WY, Zhao J, Wang JS, Cui BD, Wan NW, Chen YZ. Tetrahedron, 2017, 73: 5806–5812 Dolbier Jr. WR, Seabury MJ. Tetrahedron, 1987, 43: 2437–2442 Molchanov AP, Stepakov AV, Boitsov VM, Kopf J, Kostikov RR. Russ J Org Chem, 2002, 38: 128–135 Molchanov AP, Stepakov AV, Boitsov VM, Kopf J, Kostikov RR. Rus J Org Chem, 2002, 38: 1797–1801 Huang N, Zou L, Peng Y. Org Lett, 2017, 19: 5806–5809 Li YP, Li ZQ, Zhou B, Li ML, Xue XS, Zhu SF, Zhou QL. ACS Catal, 2019, 9: 6522–6529 Li YP, Zhu SF, Zhou QL. Org Lett, 2019, 21: 9391–9395 Wannassi N, Jelizi H, El Baker Rammah M, Ciamala K, Knorr M, Monnier-Jobé K, Rousselin Y, Kubicki MM, Strohmann C. Heterocycles, 2012, 85: 835–849 Deposition Number 2044240 (5j), 2063386 (6v) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.