Asymmetric Supercapacitors Based on Graphene/MnO<sub>2</sub> and Activated Carbon Nanofiber Electrodes with High Power and Energy Density

Advanced Functional Materials - Tập 21 Số 12 - Trang 2366-2375 - 2011
Zhuangjun Fan1, Jun Yan1, Tong Wei1, Linjie Zhi2, Guoqing Ning3, Tianyou Li1, Fei Wei4
1Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P.R. China
2National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190, P. R. China
3State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P, .R. China
4Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China

Tóm tắt

AbstractAsymmetric supercapacitor with high energy density has been developed successfully using graphene/MnO2 composite as positive electrode and activated carbon nanofibers (ACN) as negative electrode in a neutral aqueous Na2SO4 electrolyte. Due to the high capacitances and excellent rate performances of graphene/MnO2 and ACN, as well as the synergistic effects of the two electrodes, such asymmetric cell exhibits superior electrochemical performances. An optimized asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.8 V, and exhibits maximum energy density of 51.1 Wh kg−1, which is much higher than that of MnO2//DWNT cell (29.1 Wh kg−1). Additionally, graphene/MnO2//ACN asymmetric supercapacitor exhibits excellent cycling durability, with 97% specific capacitance retained even after 1000 cycles. These encouraging results show great potential in developing energy storage devices with high energy and power densities for practical applications.

Từ khóa


Tài liệu tham khảo

10.1002/adma.200903328

10.1038/nmat2297

10.1002/adma.200902175

10.1007/978-1-4757-3058-6

10.1002/adma.200904349

10.1016/j.jpowsour.2010.06.013

10.1016/j.jpowsour.2005.03.210

10.1016/j.elecom.2005.08.017

10.1021/nn100856y

10.1021/nn101754k

10.1016/j.elecom.2010.03.040

10.1007/s10008-009-0984-1

10.1149/1.1432245

10.1016/j.jpowsour.2005.07.024

10.1039/c000339e

10.1021/jp8113094

10.1016/j.jpowsour.2007.04.074

10.1016/j.elecom.2009.05.003

10.1016/j.jpowsour.2009.12.104

10.1016/j.jpowsour.2007.11.101

10.1002/adfm.200500937

10.1016/j.jpowsour.2007.08.115

10.1016/S0378-7753(02)00304-X

10.1002/adma.200600445

10.1002/adma.200501905

10.1021/cm9007365

10.1016/j.jpowsour.2009.01.009

10.1016/j.carbon.2010.06.047

10.1016/j.elecom.2010.06.037

10.1002/smll.200700139

10.1016/j.carbon.2006.09.006

10.1021/cm000426c

10.1021/cm980399e

10.1016/j.jpowsour.2006.07.060

10.1021/nl101723g

10.1016/j.matchemphys.2009.04.028

10.1002/adma.200901775

10.1016/j.jpowsour.2008.09.063

10.1149/1.3236500

10.1016/j.ssi.2010.04.016

10.1021/jp044252o

10.1016/S0378-7753(01)00707-8

10.1021/nl802558y

10.1149/1.1380254

10.1016/j.jpowsour.2008.10.049

10.1016/j.electacta.2007.06.023

10.1016/j.jpowsour.2009.06.068

10.1016/j.jpowsour.2009.06.017

10.1016/j.electacta.2006.10.035

10.1016/j.electacta.2005.12.025

10.1016/j.jpowsour.2009.06.006

10.1002/anie.200702721

10.1016/j.jpowsour.2010.01.041

10.1016/j.jpowsour.2009.10.108

10.1016/j.jpowsour.2010.01.006

10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G

10.1149/1.2437665

10.1021/nl8038579

10.1007/s00339-005-3401-3

10.1007/s00339-005-3397-8

10.1149/1.1506463

10.1149/1.3106112

10.1149/1.1650835

10.1016/j.elecom.2006.05.018

Ren Y., 2011, Chem. Eng. J.

10.1021/jp064483q

10.1016/j.carbon.2009.09.066