Astrogliopathology: Could nanotechnology restore aberrant calcium signalling and pathological astroglial remodelling?
Tài liệu tham khảo
Virchow, 1858, Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre
Golgi, 1870, Sulla sostanza connettiva del cervello (nevroglia), Rendiconti del R, v. 3, 275
Golgi, 1903
Lenhossek, 1895
Hanisch, 2007, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nat. Neurosci., 10, 1387, 10.1038/nn1997
Kettenmann, 2011, Physiology of microglia, Physiol. Rev., 91, 461, 10.1152/physrev.00011.2010
Verkhratsky, 2010, Physiology of neuronal–glial networking, Neurochem. Int., 57, 332, 10.1016/j.neuint.2010.02.002
Verkhratsky, 2007, Glial neurobiology
2012
Hanani, 2010, Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function, Brain Res. Rev., 64, 304, 10.1016/j.brainresrev.2010.04.009
Verkhratsky, 2012, Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro, 4, e00082, 10.1042/AN20120010
Sofroniew, 2009, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 32, 638, 10.1016/j.tins.2009.08.002
Parpura, 2012, Glial cells in (patho)physiology, J. Neurochem., 121, 4, 10.1111/j.1471-4159.2012.07664.x
Nedergaard, 2010, Glial calcium and diseases of the nervous system, Cell Calcium, 47, 140, 10.1016/j.ceca.2009.11.010
Giaume, 2007, Glia: the fulcrum of brain diseases, Cell Death Differ., 14, 1324, 10.1038/sj.cdd.4402144
De Keyser, 2008, Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders, J. Neurol. Sci., 267, 3, 10.1016/j.jns.2007.08.044
Cornell Bell, 1990, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 247, 470, 10.1126/science.1967852
Verkhratsky, 1998, Glial calcium: homeostasis and signaling function, Physiol. Rev., 78, 99, 10.1152/physrev.1998.78.1.99
Verkhratsky, 2012, Calcium signalling in astroglia, Mol. Cell. Endocrinol., 353, 45, 10.1016/j.mce.2011.08.039
Verkhratsky, 2012, Neurotransmitters and integration in neuronal–astroglial networks, Neurochem. Res., 37, 2326, 10.1007/s11064-012-0765-6
Verkhratsky, 2009, Purinoceptors on neuroglia, Mol. Neurobiol., 39, 190, 10.1007/s12035-009-8063-2
Bekar, 2008, Locus coeruleus α-adrenergic-mediated activation of cortical astrocytes in vivo, Cereb. Cortex, 18, 2789, 10.1093/cercor/bhn040
Duffy, 1995, Adrenergic calcium signaling in astrocyte networks within the hippocampal slice, J. Neurosci., 15, 5535, 10.1523/JNEUROSCI.15-08-05535.1995
Kirischuk, 1995, ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 15, 7861, 10.1523/JNEUROSCI.15-12-07861.1995
Porter, 1995, Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 65, 1515, 10.1046/j.1471-4159.1995.65041515.x
Porter, 1995, GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i, Glia, 13, 101, 10.1002/glia.440130204
Wang, 2006, Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo, Nat. Neurosci., 9, 816, 10.1038/nn1703
Malarkey, 2008, Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 56, 821, 10.1002/glia.20656
Lalo, 2011, Age-dependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 10, 392, 10.1111/j.1474-9726.2011.00682.x
Lalo, 2006, NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 26, 2673, 10.1523/JNEUROSCI.4689-05.2006
Lalo, 2008, P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 28, 5473, 10.1523/JNEUROSCI.1149-08.2008
Lalo, 2011, Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells, Biochim. Biophys. Acta, 1813, 992, 10.1016/j.bbamcr.2010.09.007
Palygin, 2010, Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 48, 225, 10.1016/j.ceca.2010.09.004
Kirischuk, 2012, Sodium dynamics: another key to astroglial excitability?, Trends Neurosci., 35, 497, 10.1016/j.tins.2012.04.003
Reyes, 2012, Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 4, e00075, 10.1042/AN20110059
Takano, 2009, Astrocytes and ischemic injury, Stroke, 40, S8, 10.1161/STROKEAHA.108.533166
de Lanerolle, 2005, New facets of the neuropathology and molecular profile of human temporal lobe epilepsy, Epilepsy Behav., 7, 190, 10.1016/j.yebeh.2005.06.003
Seifert, 2006, Astrocyte dysfunction in neurological disorders: a molecular perspective, Nat. Rev. Neurosci., 7, 194, 10.1038/nrn1870
Binder, 2006, Functional changes in astroglial cells in epilepsy, Glia, 54, 358, 10.1002/glia.20394
Inyushin, 2010, Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice, Epilepsia, 51, 1707, 10.1111/j.1528-1167.2010.02592.x
Carmignoto, 2012, Astrocyte calcium signaling and epilepsy, Glia, 60, 1227, 10.1002/glia.22318
Seifert, 2002, Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy, Epilepsia, 43, 162, 10.1046/j.1528-1157.43.s.5.10.x
Manning, 1997, Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's encephalitis), Glia, 21, 332, 10.1002/(SICI)1098-1136(199711)21:3<332::AID-GLIA8>3.0.CO;2-6
Tian, 2005, An astrocytic basis of epilepsy, Nat. Med., 11, 973, 10.1038/nm1277
Abramov, 2003, Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity, J. Neurosci., 23, 5088, 10.1523/JNEUROSCI.23-12-05088.2003
Kuchibhotla, 2009, Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice, Science, 323, 1211, 10.1126/science.1169096
Hazell, 2009, Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy, Neurochem. Int., 55, 129, 10.1016/j.neuint.2009.02.020
Hazell, 2009, Loss of astrocytic glutamate transporters in Wernicke encephalopathy, Glia, 58, 148, 10.1002/glia.20908
Johnston-Wilson, 2000, Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium, Mol. Psychiatry, 5, 142, 10.1038/sj.mp.4000696
Mori, 2007, Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging, Psychiatry Res., 154, 133, 10.1016/j.pscychresns.2006.09.004
Rajkowska, 2002, Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia, Schizophr. Res., 57, 127, 10.1016/S0920-9964(02)00339-0
Oliet, 2006, Molecular determinants of d-serine-mediated gliotransmission: from release to function, Glia, 54, 726, 10.1002/glia.20356
Henneberger, 2010, Long-term potentiation depends on release of d-serine from astrocytes, Nature, 463, 232, 10.1038/nature08673
Rajkowska, 2007, Gliogenesis and glial pathology in depression, CNS Neurol. Disord. Drug Targets, 6, 219, 10.2174/187152707780619326
Si, 2004, Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression, Neuropsychopharmacology, 29, 2088, 10.1038/sj.npp.1300525
Gosselin, 2009, Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression, Neuroscience, 159, 915, 10.1016/j.neuroscience.2008.10.018
Verkhratsky, 2010, Astrocytes in Alzheimer's disease, Neurotherapeutics, 7, 399, 10.1016/j.nurt.2010.05.017
Rossi, 2009, Astrocytic dysfunction: insights on the role in neurodegeneration, Brain Res. Bull., 80, 224, 10.1016/j.brainresbull.2009.07.012
Rodriguez, 2011, Neuroglial roots of neurodegenerative diseases?, Mol. Neurobiol., 43, 87, 10.1007/s12035-010-8157-x
Rossi, 2008, Focal degeneration of astrocytes in amyotrophic lateral sclerosis, Cell Death Differ., 15, 1691, 10.1038/cdd.2008.99
Staats, 2009, Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival, J. Biol. Phys., 35, 337, 10.1007/s10867-009-9141-4
Wang, 2011, Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice, Hum. Mol. Genet., 20, 286, 10.1093/hmg/ddq463
Yamanaka, 2008, Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis, Nat. Neurosci., 11, 251, 10.1038/nn2047
Kulijewicz-Nawrot, 2012, Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease, J. Anat., 221, 252, 10.1111/j.1469-7580.2012.01536.x
Olabarria, 2010, Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease, Glia, 58, 831
Yeh, 2012, Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease, ASN Neuro, 3, 271, 10.1042/AN20110025
Johnson, 2012, Brain imaging in Alzheimer disease, Cold Spring Harb. Perspect. Med., 2, a006213, 10.1101/cshperspect.a006213
Huang, 2012, Alzheimer mechanisms and therapeutic strategies, Cell, 148, 1204, 10.1016/j.cell.2012.02.040
Broe, 2004, Astrocytic degeneration relates to the severity of disease in frontotemporal dementia, Brain, 127, 2214, 10.1093/brain/awh250
Kersaitis, 2004, Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies, Acta Neuropathol., 108, 515, 10.1007/s00401-004-0917-0
Potts, 2005, Thalamic dementia: an example of primary astroglial dystrophy of Seitelberger, Clin. Neuropathol., 24, 271
Rosenbaum, 2011, Niemann–Pick type C disease: molecular mechanisms and potential therapeutic approaches, J. Neurochem., 116, 789, 10.1111/j.1471-4159.2010.06976.x
Estrada-Sánchez, 2012, Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes, Basal Ganglia., 2, 57, 10.1016/j.baga.2012.04.029
Radushkevich, 1952, On the carbon structure occurring following thermal degradation of carbon dioxide on ferrum surface, Zurn Fisic Chim, 26, 88
Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0
Bethune, 1993, Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 10.1038/363605a0
Monthioux, 2006, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, 44, 1621, 10.1016/j.carbon.2006.03.019
Bekyarova, 2005, Applications of carbon nanotubes in biotechnology and biomedicine, J. Biomed. Nanotechnol., 1, 3, 10.1166/jbn.2005.004
Malarkey, 2007, Applications of carbon nanotubes in neurobiology, Neurodegener. Dis., 4, 292, 10.1159/000101885
Bekyarova, 2005, Biofunctionalization of carbon nanotubes
Ni, 2005, Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth, J. Nanosci. Nanotechnol., 5, 1707, 10.1166/jnn.2005.189
Malarkey, 2009, Conductive single-walled carbon nanotube substrates modulate neuronal growth, Nano Lett., 9, 264, 10.1021/nl802855c
Gottipati, 2012, Chemically functionalized water-soluble single-walled carbon nanotubes modulate morpho-functional characteristics of astrocytes, Nano Lett., 12, 4742, 10.1021/nl302178s
Park, 2003, Single-walled carbon nanotubes are a new class of ion channel blockers, J. Biol. Chem., 278, 50212, 10.1074/jbc.M310216200
Chhowalla, 2005, Irreversible blocking of ion channels using functionalized single-walled carbon nanotubes, Nanotechnology, 16, 2982, 10.1088/0957-4484/16/12/042
Mattson, 1987, Calcium regulation of neurite elongation and growth cone motility, J. Neurosci., 7, 4034, 10.1523/JNEUROSCI.07-12-04034.1987
Mattson, 2000, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Mol. Neurosci., 14, 175, 10.1385/JMN:14:3:175
Mark, 1997, A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide, J. Neurochem., 68, 255, 10.1046/j.1471-4159.1997.68010255.x
Kater, 1988, Calcium regulation of the neuronal growth cone, Trends Neurosci., 11, 315, 10.1016/0166-2236(88)90094-X
Uchida, 1992, Modification of histidine residues in proteins by reaction with 4-hydroxynonenal, Proc. Natl. Acad. Sci. U. S. A., 89, 4544, 10.1073/pnas.89.10.4544
Mattson, 1988, Neurite outgrowth in individual neurons of a neuronal population is differentially regulated by calcium and cyclic AMP, J. Neurosci., 8, 1704, 10.1523/JNEUROSCI.08-05-01704.1988
Zakharenko, 2000, Plasma membrane recycling and flow in growing neurites, Neuroscience, 97, 185, 10.1016/S0306-4522(00)00022-1
Malarkey, 2008, Water soluble single-walled carbon nanotubes inhibit stimulated endocytosis in neurons, Nano Lett., 8, 3538, 10.1021/nl8017912
Jakubek, 2009, The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes, Biomaterials, 30, 6351, 10.1016/j.biomaterials.2009.08.009
Lee, 2009, Chapter 6—carbon nanotubes as substrates/scaffolds for neural cell growth, Prog. Brain Res., 180, 110, 10.1016/S0079-6123(08)80006-4
Roman, 2011, Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury, J. Neurotrauma, 28, 2349, 10.1089/neu.2010.1409
Wilms, 1997, Ramification of microglia, monocytes and macrophages in vitro: influences of various epithelial and mesenchymal cells and their conditioned media, Cell Tissue Res., 287, 447, 10.1007/s004410050769
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0