Astrogliopathology: Could nanotechnology restore aberrant calcium signalling and pathological astroglial remodelling?

Vladimir Parpura1,2, Alexei Verkhratsky3,4,5
1Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA
2Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
3Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
4Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
5Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK

Tài liệu tham khảo

Virchow, 1858, Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre Golgi, 1870, Sulla sostanza connettiva del cervello (nevroglia), Rendiconti del R, v. 3, 275 Golgi, 1903 Lenhossek, 1895 Hanisch, 2007, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nat. Neurosci., 10, 1387, 10.1038/nn1997 Kettenmann, 2011, Physiology of microglia, Physiol. Rev., 91, 461, 10.1152/physrev.00011.2010 Verkhratsky, 2010, Physiology of neuronal–glial networking, Neurochem. Int., 57, 332, 10.1016/j.neuint.2010.02.002 Verkhratsky, 2007, Glial neurobiology 2012 Hanani, 2010, Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function, Brain Res. Rev., 64, 304, 10.1016/j.brainresrev.2010.04.009 Verkhratsky, 2012, Neurological diseases as primary gliopathies: a reassessment of neurocentrism, ASN Neuro, 4, e00082, 10.1042/AN20120010 Sofroniew, 2009, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 32, 638, 10.1016/j.tins.2009.08.002 Parpura, 2012, Glial cells in (patho)physiology, J. Neurochem., 121, 4, 10.1111/j.1471-4159.2012.07664.x Nedergaard, 2010, Glial calcium and diseases of the nervous system, Cell Calcium, 47, 140, 10.1016/j.ceca.2009.11.010 Giaume, 2007, Glia: the fulcrum of brain diseases, Cell Death Differ., 14, 1324, 10.1038/sj.cdd.4402144 De Keyser, 2008, Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders, J. Neurol. Sci., 267, 3, 10.1016/j.jns.2007.08.044 Cornell Bell, 1990, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 247, 470, 10.1126/science.1967852 Verkhratsky, 1998, Glial calcium: homeostasis and signaling function, Physiol. Rev., 78, 99, 10.1152/physrev.1998.78.1.99 Verkhratsky, 2012, Calcium signalling in astroglia, Mol. Cell. Endocrinol., 353, 45, 10.1016/j.mce.2011.08.039 Verkhratsky, 2012, Neurotransmitters and integration in neuronal–astroglial networks, Neurochem. Res., 37, 2326, 10.1007/s11064-012-0765-6 Verkhratsky, 2009, Purinoceptors on neuroglia, Mol. Neurobiol., 39, 190, 10.1007/s12035-009-8063-2 Bekar, 2008, Locus coeruleus α-adrenergic-mediated activation of cortical astrocytes in vivo, Cereb. Cortex, 18, 2789, 10.1093/cercor/bhn040 Duffy, 1995, Adrenergic calcium signaling in astrocyte networks within the hippocampal slice, J. Neurosci., 15, 5535, 10.1523/JNEUROSCI.15-08-05535.1995 Kirischuk, 1995, ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 15, 7861, 10.1523/JNEUROSCI.15-12-07861.1995 Porter, 1995, Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 65, 1515, 10.1046/j.1471-4159.1995.65041515.x Porter, 1995, GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i, Glia, 13, 101, 10.1002/glia.440130204 Wang, 2006, Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo, Nat. Neurosci., 9, 816, 10.1038/nn1703 Malarkey, 2008, Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 56, 821, 10.1002/glia.20656 Lalo, 2011, Age-dependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 10, 392, 10.1111/j.1474-9726.2011.00682.x Lalo, 2006, NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 26, 2673, 10.1523/JNEUROSCI.4689-05.2006 Lalo, 2008, P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 28, 5473, 10.1523/JNEUROSCI.1149-08.2008 Lalo, 2011, Ionotropic receptors in neuronal–astroglial signalling: what is the role of “excitable” molecules in non-excitable cells, Biochim. Biophys. Acta, 1813, 992, 10.1016/j.bbamcr.2010.09.007 Palygin, 2010, Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 48, 225, 10.1016/j.ceca.2010.09.004 Kirischuk, 2012, Sodium dynamics: another key to astroglial excitability?, Trends Neurosci., 35, 497, 10.1016/j.tins.2012.04.003 Reyes, 2012, Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 4, e00075, 10.1042/AN20110059 Takano, 2009, Astrocytes and ischemic injury, Stroke, 40, S8, 10.1161/STROKEAHA.108.533166 de Lanerolle, 2005, New facets of the neuropathology and molecular profile of human temporal lobe epilepsy, Epilepsy Behav., 7, 190, 10.1016/j.yebeh.2005.06.003 Seifert, 2006, Astrocyte dysfunction in neurological disorders: a molecular perspective, Nat. Rev. Neurosci., 7, 194, 10.1038/nrn1870 Binder, 2006, Functional changes in astroglial cells in epilepsy, Glia, 54, 358, 10.1002/glia.20394 Inyushin, 2010, Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice, Epilepsia, 51, 1707, 10.1111/j.1528-1167.2010.02592.x Carmignoto, 2012, Astrocyte calcium signaling and epilepsy, Glia, 60, 1227, 10.1002/glia.22318 Seifert, 2002, Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy, Epilepsia, 43, 162, 10.1046/j.1528-1157.43.s.5.10.x Manning, 1997, Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's encephalitis), Glia, 21, 332, 10.1002/(SICI)1098-1136(199711)21:3<332::AID-GLIA8>3.0.CO;2-6 Tian, 2005, An astrocytic basis of epilepsy, Nat. Med., 11, 973, 10.1038/nm1277 Abramov, 2003, Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity, J. Neurosci., 23, 5088, 10.1523/JNEUROSCI.23-12-05088.2003 Kuchibhotla, 2009, Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice, Science, 323, 1211, 10.1126/science.1169096 Hazell, 2009, Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy, Neurochem. Int., 55, 129, 10.1016/j.neuint.2009.02.020 Hazell, 2009, Loss of astrocytic glutamate transporters in Wernicke encephalopathy, Glia, 58, 148, 10.1002/glia.20908 Johnston-Wilson, 2000, Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium, Mol. Psychiatry, 5, 142, 10.1038/sj.mp.4000696 Mori, 2007, Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging, Psychiatry Res., 154, 133, 10.1016/j.pscychresns.2006.09.004 Rajkowska, 2002, Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia, Schizophr. Res., 57, 127, 10.1016/S0920-9964(02)00339-0 Oliet, 2006, Molecular determinants of d-serine-mediated gliotransmission: from release to function, Glia, 54, 726, 10.1002/glia.20356 Henneberger, 2010, Long-term potentiation depends on release of d-serine from astrocytes, Nature, 463, 232, 10.1038/nature08673 Rajkowska, 2007, Gliogenesis and glial pathology in depression, CNS Neurol. Disord. Drug Targets, 6, 219, 10.2174/187152707780619326 Si, 2004, Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression, Neuropsychopharmacology, 29, 2088, 10.1038/sj.npp.1300525 Gosselin, 2009, Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression, Neuroscience, 159, 915, 10.1016/j.neuroscience.2008.10.018 Verkhratsky, 2010, Astrocytes in Alzheimer's disease, Neurotherapeutics, 7, 399, 10.1016/j.nurt.2010.05.017 Rossi, 2009, Astrocytic dysfunction: insights on the role in neurodegeneration, Brain Res. Bull., 80, 224, 10.1016/j.brainresbull.2009.07.012 Rodriguez, 2011, Neuroglial roots of neurodegenerative diseases?, Mol. Neurobiol., 43, 87, 10.1007/s12035-010-8157-x Rossi, 2008, Focal degeneration of astrocytes in amyotrophic lateral sclerosis, Cell Death Differ., 15, 1691, 10.1038/cdd.2008.99 Staats, 2009, Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival, J. Biol. Phys., 35, 337, 10.1007/s10867-009-9141-4 Wang, 2011, Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice, Hum. Mol. Genet., 20, 286, 10.1093/hmg/ddq463 Yamanaka, 2008, Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis, Nat. Neurosci., 11, 251, 10.1038/nn2047 Kulijewicz-Nawrot, 2012, Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease, J. Anat., 221, 252, 10.1111/j.1469-7580.2012.01536.x Olabarria, 2010, Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease, Glia, 58, 831 Yeh, 2012, Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease, ASN Neuro, 3, 271, 10.1042/AN20110025 Johnson, 2012, Brain imaging in Alzheimer disease, Cold Spring Harb. Perspect. Med., 2, a006213, 10.1101/cshperspect.a006213 Huang, 2012, Alzheimer mechanisms and therapeutic strategies, Cell, 148, 1204, 10.1016/j.cell.2012.02.040 Broe, 2004, Astrocytic degeneration relates to the severity of disease in frontotemporal dementia, Brain, 127, 2214, 10.1093/brain/awh250 Kersaitis, 2004, Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies, Acta Neuropathol., 108, 515, 10.1007/s00401-004-0917-0 Potts, 2005, Thalamic dementia: an example of primary astroglial dystrophy of Seitelberger, Clin. Neuropathol., 24, 271 Rosenbaum, 2011, Niemann–Pick type C disease: molecular mechanisms and potential therapeutic approaches, J. Neurochem., 116, 789, 10.1111/j.1471-4159.2010.06976.x Estrada-Sánchez, 2012, Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes, Basal Ganglia., 2, 57, 10.1016/j.baga.2012.04.029 Radushkevich, 1952, On the carbon structure occurring following thermal degradation of carbon dioxide on ferrum surface, Zurn Fisic Chim, 26, 88 Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0 Bethune, 1993, Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 10.1038/363605a0 Monthioux, 2006, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, 44, 1621, 10.1016/j.carbon.2006.03.019 Bekyarova, 2005, Applications of carbon nanotubes in biotechnology and biomedicine, J. Biomed. Nanotechnol., 1, 3, 10.1166/jbn.2005.004 Malarkey, 2007, Applications of carbon nanotubes in neurobiology, Neurodegener. Dis., 4, 292, 10.1159/000101885 Bekyarova, 2005, Biofunctionalization of carbon nanotubes Ni, 2005, Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth, J. Nanosci. Nanotechnol., 5, 1707, 10.1166/jnn.2005.189 Malarkey, 2009, Conductive single-walled carbon nanotube substrates modulate neuronal growth, Nano Lett., 9, 264, 10.1021/nl802855c Gottipati, 2012, Chemically functionalized water-soluble single-walled carbon nanotubes modulate morpho-functional characteristics of astrocytes, Nano Lett., 12, 4742, 10.1021/nl302178s Park, 2003, Single-walled carbon nanotubes are a new class of ion channel blockers, J. Biol. Chem., 278, 50212, 10.1074/jbc.M310216200 Chhowalla, 2005, Irreversible blocking of ion channels using functionalized single-walled carbon nanotubes, Nanotechnology, 16, 2982, 10.1088/0957-4484/16/12/042 Mattson, 1987, Calcium regulation of neurite elongation and growth cone motility, J. Neurosci., 7, 4034, 10.1523/JNEUROSCI.07-12-04034.1987 Mattson, 2000, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Mol. Neurosci., 14, 175, 10.1385/JMN:14:3:175 Mark, 1997, A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide, J. Neurochem., 68, 255, 10.1046/j.1471-4159.1997.68010255.x Kater, 1988, Calcium regulation of the neuronal growth cone, Trends Neurosci., 11, 315, 10.1016/0166-2236(88)90094-X Uchida, 1992, Modification of histidine residues in proteins by reaction with 4-hydroxynonenal, Proc. Natl. Acad. Sci. U. S. A., 89, 4544, 10.1073/pnas.89.10.4544 Mattson, 1988, Neurite outgrowth in individual neurons of a neuronal population is differentially regulated by calcium and cyclic AMP, J. Neurosci., 8, 1704, 10.1523/JNEUROSCI.08-05-01704.1988 Zakharenko, 2000, Plasma membrane recycling and flow in growing neurites, Neuroscience, 97, 185, 10.1016/S0306-4522(00)00022-1 Malarkey, 2008, Water soluble single-walled carbon nanotubes inhibit stimulated endocytosis in neurons, Nano Lett., 8, 3538, 10.1021/nl8017912 Jakubek, 2009, The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes, Biomaterials, 30, 6351, 10.1016/j.biomaterials.2009.08.009 Lee, 2009, Chapter 6—carbon nanotubes as substrates/scaffolds for neural cell growth, Prog. Brain Res., 180, 110, 10.1016/S0079-6123(08)80006-4 Roman, 2011, Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury, J. Neurotrauma, 28, 2349, 10.1089/neu.2010.1409 Wilms, 1997, Ramification of microglia, monocytes and macrophages in vitro: influences of various epithelial and mesenchymal cells and their conditioned media, Cell Tissue Res., 287, 447, 10.1007/s004410050769 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0