Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các dấu hiệu tế bào thần kinh đệm và tế bào oligodendroglia trong mô hình động vật cuprizone để nghiên cứu quá trình tiêu myelin và tái myelin hóa
Tóm tắt
Sự mất myelin đi kèm với sự thoái hóa của trục thần kinh và khả năng tái myelin hóa bị suy giảm là những nguyên nhân cơ bản của bệnh tiến triển ở bệnh nhân mắc bệnh xơ cứng đa dạng. Tế bào thần kinh đệm (astrocyte) được cho là đóng vai trò quan trọng trong những quá trình này. Việc xác định các loại hình tế bào thần kinh đệm khác nhau trong sức khỏe và bệnh tật sẽ giúp hiểu rõ hơn các cơ chế bệnh sinh mà tế bào thần kinh đệm tham gia. Tuy nhiên, số lượng dấu hiệu tế bào thần kinh đệm cụ thể còn hạn chế. Do đó, chúng tôi đã thực hiện các nghiên cứu miễn dịch hóa học và phân tích các dấu hiệu khác nhau bao gồm GFAP, vimentin, S100B, ALDH1L1 và LCN2 trong quá trình tiêu myelin và tái myelin hóa bằng cách sử dụng mô hình động vật cuprizone độc hại. Áp dụng mô hình động vật này, chúng tôi đã xác nhận sự biểu hiện chồng chéo của vimentin và GFAP và nổi bật tiềm năng của ALDH1L1 như một dấu hiệu tế bào thần kinh đệm toàn diện, phù hợp với dữ liệu trước đó. Chỉ có một quần thể nhỏ tế bào thần kinh đệm dương tính với GFAP trong thể gọi nửa não đã biểu hiện cao LCN2 ở mức đỉnh của quá trình tiêu myelin và sự biểu hiện S100B cũng được tìm thấy trong một phân nhóm tế bào oligodendroglia, do đó S100B cho thấy có sự sử dụng hạn chế như một dấu hiệu tế bào thần kinh đệm cụ thể. Thêm vào đó, nhiều tế bào thần kinh đệm dương tính với GFAP ở thể gọi nửa não bên đã không biểu hiện S100B, càng củng cố phát hiện về tính đa dạng trong quần thể tế bào thần kinh đệm. Tóm lại, các kết quả của chúng tôi công nhận rằng GFAP, vimentin, LCN2 và ALDH1L1 đóng vai trò như các dấu hiệu đáng tin cậy để xác định các tế bào thần kinh đệm được kích hoạt trong quá trình tiêu myelin và tái myelin hóa do cuprizone gây ra. Hơn nữa, đã có sự khác biệt rõ ràng về vùng và thời gian trong các mức độ biểu hiện protein và mRNA cũng như các mẫu hình của các dấu hiệu đã được nghiên cứu, chủ yếu giữa các cấu trúc chất xám và chất trắng.
Từ khóa
#cuprizone #tế bào thần kinh đệm #oligodendroglia #tiêu myelin #tái myelin hóa #GFAP #vimentin #S100B #ALDH1L1 #LCN2Tài liệu tham khảo
Adami C, Bianchi R, Pula G, Donato R (2004) S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochim Biophys Acta 1742(1–3):169–177. https://doi.org/10.1016/j.bbamcr.2004.09.008
Al Nimer F, Elliott C, Bergman J, Khademi M, Dring AM, Aeinehband S, Bergenheim T, Romme Christensen J, Sellebjerg F, Svenningsson A, Linington C, Olsson T, Piehl F (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol Neuroimmunol Neuroinflamm 3(1):e191. https://doi.org/10.1212/nxi.0000000000000191
Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623
Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T (2012) Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol 123(5):627–638. https://doi.org/10.1007/s00401-012-0953-0
Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A (2016) S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 53(6):3976–3991. https://doi.org/10.1007/s12035-015-9336-6
Behrangi N, Lorenz P, Kipp M (2021) Oligodendrocyte lineage marker expression in eGFP-GFAP transgenic mice. J Mol Neurosci 71(11):2237–2248. https://doi.org/10.1007/s12031-020-01771-w
Benardais K, Gudi V, Gai L, Nessler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M (2014) Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 62(10):1659–1670. https://doi.org/10.1002/glia.22706
Berard JL, Zarruk JG, Arbour N, Prat A, Yong VW, Jacques FH, Akira S, David S (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60(7):1145–1159. https://doi.org/10.1002/glia.22342
Bhat RV, Axt KJ, Fosnaugh JS, Smith KJ, Johnson KA, Hill DE, Kinzler KW, Baraban JM (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17(2):169–174. https://doi.org/10.1002/(SICI)1098-1136(199606)17:2<169::AID-GLIA8>3.0.CO;2-Y
Bin JM, Harris SN, Kennedy TE (2016) The oligodendrocyte-specific antibody “CC1” binds quaking 7. J Neurochem 139(2):181–186. https://doi.org/10.1111/jnc.13745
Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20(1):73–83. https://doi.org/10.1016/0022-510x(73)90119-6
Brakeman JS, Gu SH, Wang XB, Dolin G, Baraban JM (1999) Neuronal localization of the Adenomatous polyposis coli tumor suppressor protein. Neuroscience 91(2):661–672. https://doi.org/10.1016/s0306-4522(98)00605-8
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. https://doi.org/10.1523/jneurosci.4178-07.2008
Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J (2012) White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 32(3):413–424. https://doi.org/10.1038/jcbfm.2011.193
Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1:129–169. https://doi.org/10.1016/j.bbcan.2012.03.008
Chun BY, Kim JH, Nam Y, Huh MI, Han S, Suk K (2015) Pathological Involvement of astrocyte-derived lipocalin-2 in the demyelinating optic neuritis. Invest Ophthalmol Vis Sci 56(6):3691–3698. https://doi.org/10.1167/iovs.15-16851
Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6:180. https://doi.org/10.3389/fneur.2015.00180
Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45(1):17–23. https://doi.org/10.1006/geno.1997.4896
Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J (2004) Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 27(4):453–465. https://doi.org/10.1016/j.mcn.2004.07.008
Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57
Du J, Yi M, Zhou F, He W, Yang A, Qiu M, Huang H (2021) S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain 14(1):154. https://doi.org/10.1186/s13041-021-00865-9
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Liu J, Moulson A, Plemel JR, Tetzlaff W (2018) Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat Commun 9(1):3066. https://doi.org/10.1038/s41467-018-05473-1
Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54(1):15–36. https://doi.org/10.1016/0306-4522(93)90380-x
Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274(34):23996–24006. https://doi.org/10.1074/jbc.274.34.23996
Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237. https://doi.org/10.1111/j.1750-3639.1994.tb00838.x
Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106(4):489–498. https://doi.org/10.1016/s0092-8674(01)00471-8
Ferreira AC, Der Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F (2015) From the periphery to the brain: lipocalin-2, a friend or foe? Prog Neurobiol 131:120–136. https://doi.org/10.1016/j.pneurobio.2015.06.005
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. https://doi.org/10.1038/nature03104
Floderer M, Prchal-Murphy M, Vizzardelli C (2014) Dendritic cell-secreted lipocalin2 induces CD8+ T-cell apoptosis, contributes to T-cell priming and leads to a TH1 phenotype. PLoS ONE 9(7):e101881. https://doi.org/10.1371/journal.pone.0101881
Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14. https://doi.org/10.1042/bj3180001
Foo LC, Dougherty JD (2013) Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61(9):1533–1541. https://doi.org/10.1002/glia.22539
Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9):705–714. https://doi.org/10.1038/nrn917
Gingele S, Henkel F, Heckers S, Moellenkamp TM, Hummert MW, Skripuletz T, Stangel M, Gudi V (2020) Delayed demyelination and impaired remyelination in aged mice in the cuprizone model. Cells. https://doi.org/10.3390/cells9040945
Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci 57(2):166–175. https://doi.org/10.1007/s12031-015-0595-5
Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J, Trebst C, Stangel M (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138. https://doi.org/10.1016/j.brainres.2009.06.005
Gudi V, Skuljec J, Yildiz O, Frichert K, Skripuletz T, Moharregh-Khiabani D, Voss E, Wissel K, Wolter S, Stangel M (2011) Spatial and temporal profiles of growth factor expression during CNS demyelination reveal the dynamics of repair priming. PLoS One 6(7):e22623. https://doi.org/10.1371/journal.pone.0022623
Gudi V, Gingele S, Skripuletz T, Stangel M (2014) Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 8:73. https://doi.org/10.3389/fncel.2014.00073
Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia 51(2):81–97. https://doi.org/10.1002/glia.20184
Heckers S, Held N, Kronenberg J, Skripuletz T, Bleich A, Gudi V, Stangel M (2017) Investigation of cuprizone inactivation by temperature. Neurotox Res 31(4):570–577. https://doi.org/10.1007/s12640-017-9704-2
Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):393–408. https://doi.org/10.1042/an20120062
Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49. https://doi.org/10.1016/s0165-5728(98)00168-4
Ip JP, Noçon AL, Hofer MJ, Lim SL, Müller M, Campbell IL (2011) Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration. J Neuroinflammation 8:124. https://doi.org/10.1186/1742-2094-8-124
Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013a) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191(10):5204–5219. https://doi.org/10.4049/jimmunol.1301637
Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013b) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27(3):1176–1190. https://doi.org/10.1096/fj.12-222257
Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, Suk K (2015) Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 49:135–156. https://doi.org/10.1016/j.neubiorev.2014.12.006
Jung M, Brune B, Hotter G, Sola A (2016) Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci Rep 6:21950. https://doi.org/10.1038/srep21950
Jung M, Weigert A, Mertens C, Rehwald C, Brune B (2017) Iron handling in tumor-associated macrophages-is there a new role for lipocalin-2? Front Immunol 8:1171. https://doi.org/10.3389/fimmu.2017.01171
Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043
Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16(1):79–106. https://doi.org/10.1177/1073858409342593
Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283(Pt B):541–549. https://doi.org/10.1016/j.expneurol.2016.03.009
Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J, Davidson T, Dutta R, Goverman J, Bergles D, Calabresi PA (2019) Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 10(1):3887. https://doi.org/10.1038/s41467-019-11638-3
Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268(14):10425–10432
Krupenko SA (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 178(1–3):84–93. https://doi.org/10.1016/j.cbi.2008.09.007
Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130. https://doi.org/10.1523/JNEUROSCI.3467-12.2013
Lassmann H, Brück W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2):210–218. https://doi.org/10.1111/j.1750-3639.2007.00064.x
Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656. https://doi.org/10.1038/nrneurol.2012.168
Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, Kim SH, Kim IK, Suk K (2007) A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 179(5):3231–3241. https://doi.org/10.4049/jimmunol.179.5.3231
Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K (2009) Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 29(1):234–249. https://doi.org/10.1523/jneurosci.5273-08.2009
Lee HN, Jeon GS, Kim DW, Cho IH, Cho SS (2010) Expression of adenomatous polyposis coli protein in reactive astrocytes in hippocampus of kainic acid-induced rat. Neurochem Res 35(1):114–121. https://doi.org/10.1007/s11064-009-0036-3
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K (2011) Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 286(51):43855–43870. https://doi.org/10.1074/jbc.M111.299248
Lee SA, Noel S, Kurzhagen JT, Sadasivam M, Pierorazio PM, Arend LJ, Hamad AR, Rabb H (2020) CD4(+) T cell-derived NGAL modifies the outcome of ischemic acute kidney injury. J Immunol 204(3):586–595. https://doi.org/10.4049/jimmunol.1900677
Leroy K, Duyckaerts C, Bovekamp L, Muller O, Anderton BH, Brion JP (2001) Increase of adenomatous polyposis coli immunoreactivity is a marker of reactive astrocytes in Alzheimer’s disease and in other pathological conditions. Acta Neuropathol 102(1):1–10. https://doi.org/10.1007/s004010000340
Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M (2014) Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62(12):2022–2033. https://doi.org/10.1002/glia.22723
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/wnl.0000000000000560
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717. https://doi.org/10.1002/1531-8249(200006)47:6%3c707::aid-ana3%3e3.0.co;2-q
Lumdsen CE (1970) The neuropathology of multiple sclerosis. Elsevier, Amsterdam
Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N, Correia-Neves M, Palha JA (2008) Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 28(3):450–455. https://doi.org/10.1038/sj.jcbfm.9600557
Marques F, Mesquita SD, Sousa JC, Coppola G, Gao F, Geschwind DH, Columba-Cabezas S, Aloisi F, Degn M, Cerqueira JJ, Sousa N, Correia-Neves M, Palha JA (2012) Lipocalin 2 is present in the EAE brain and is modulated by natalizumab. Front Cell Neurosci 6:33. https://doi.org/10.3389/fncel.2012.00033
Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116. https://doi.org/10.1111/j.1750-3639.2001.tb00385.x
Meheus LA, Fransen LM, Raymackers JG, Blockx HA, Van Beeumen JJ, Van Bun SM, Van de Voorde A (1993) Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages. J Immunol 151(3):1535–1547
Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187. https://doi.org/10.1111/jnc.14574
Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005
Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89(1):13–21. https://doi.org/10.1002/jnr.22482
Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, Tai A, Yang Y (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37(36):8706–8717. https://doi.org/10.1523/jneurosci.3956-16.2017
Morel L, Men Y, Chiang MSR, Tian Y, Jin S, Yelick J, Higashimori H, Yang Y (2019) Intracortical astrocyte subpopulations defined by astrocyte reporter mice in the adult brain. Glia 67(1):171–181. https://doi.org/10.1002/glia.23545
Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720. https://doi.org/10.1007/s00018-008-8059-5
Nam Y, Kim JH, Seo M, Kim JH, Jin M, Jeon S, Seo JW, Lee WH, Bing SJ, Jee Y, Lee WK, Park DH, Kook H, Suk K (2014) Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J Biol Chem 289(24):16773–16789. https://doi.org/10.1074/jbc.M113.542282
Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36(1):20–42
Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. https://doi.org/10.1007/978-1-61779-452-0_3
Ono K, Takebayashi H, Ikenaka K (2009) Olig2 transcription factor in the developing and injured forebrain; cell lineage and glial development. Mol Cells 27(4):397–401. https://doi.org/10.1007/s10059-009-0067-2
Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Brück W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172. https://doi.org/10.1093/brain/awl217
Pekny M (2001) Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog Brain Res 132:23–30. https://doi.org/10.1016/s0079-6123(01)32062-9
Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098. https://doi.org/10.1152/physrev.00041.2013
Ponath G, Park C, Pitt D (2018) The role of astrocytes in multiple sclerosis. Front Immunol 9:217. https://doi.org/10.3389/fimmu.2018.00217
Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55(2):165–177. https://doi.org/10.1002/glia.20445
Rathore KI, Berard JL, Redensek A, Chierzi S, Lopez-Vales R, Santos M, Akira S, David S (2011) Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. J Neurosci 31(38):13412–13419. https://doi.org/10.1523/jneurosci.0116-11.2011
Rickmann M, Wolff JR (1995) S100 immunoreactivity in a subpopulation of oligodendrocytes and Ranvier’s nodes of adult rat brain. Neurosci Lett 186(1):13–16. https://doi.org/10.1016/0304-3940(95)11269-3
Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632. https://doi.org/10.1002/jemt.10303
Salinas Tejedor L, Gudi V, Kucman V, Pul R, Gingele S, Sühs KW, Stangel M, Skripuletz T (2015) Oligodendroglial markers in the cuprizone model of CNS de- and remyelination. Histol Histopathol 30(12):1455–1464. https://doi.org/10.14670/hh-11-640
Schmidt T, Awad H, Slowik A, Beyer C, Kipp M, Clarner T (2013) Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci 49(1):80–88. https://doi.org/10.1007/s12031-012-9896-0
Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90(2):435–447. https://doi.org/10.1083/jcb.90.2.435
Senda T, Iino S, Matsushita K, Matsumine A, Kobayashi S, Akiyama T (1998) Localization of the adenomatous polyposis coli tumour suppressor protein in the mouse central nervous system. Neuroscience 83(3):857–866. https://doi.org/10.1016/s0306-4522(97)00459-4
Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26(12):1585–1597. https://doi.org/10.14670/hh-26.1585
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136(Pt 1):147–167. https://doi.org/10.1093/brain/aws262
Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8
Steelman AJ, Thompson JP, Li J (2012) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72(1):32–42. https://doi.org/10.1016/j.neures.2011.10.002
Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2. https://doi.org/10.1186/1471-2202-8-2
Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13(3):329–339. https://doi.org/10.1111/j.1750-3639.2003.tb00032.x
Tagge I, O’Connor A, Chaudhary P, Pollaro J, Berlow Y, Chalupsky M, Bourdette D, Woltjer R, Johnson M, Rooney W (2016) Spatio-temporal patterns of demyelination and remyelination in the cuprizone mouse model. PLoS One 11(4):e0152480. https://doi.org/10.1371/journal.pone.0152480
Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86(16):3494–3502. https://doi.org/10.1002/jnr.21862
Valerio-Gomes B, Guimaraes DM, Szczupak D, Lent R (2018) The absolute number of oligodendrocytes in the adult mouse brain. Front Neuroanat 12:90. https://doi.org/10.3389/fnana.2018.00090
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389. https://doi.org/10.1152/physrev.00042.2016
Williams A, Piaton G, Lubetzki C (2007) Astrocytes–friends or foes in multiple sclerosis? Glia 55(13):1300–1312. https://doi.org/10.1002/glia.20546
Winchenbach J, Düking T, Berghoff SA, Stumpf SK, Hülsmann S, Nave KA, Saher G (2016) Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice. F1000Res 5:2934. https://doi.org/10.12688/f1000research.10509.1
Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, van Leyen K, Lok J, Wang X, Lo EH (2014) Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45(7):2085–2092. https://doi.org/10.1161/strokeaha.114.005733
Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207. https://doi.org/10.1002/glia.21089