Mối quan hệ giữa các yếu tố môi trường xây dựng và các ca nhiễm SARS-CoV-2 ở cấp độ khu dân cư tại một khu vực đô thị ở Đức

Journal of Urban Health - Tập 100 - Trang 40-50 - 2023
Dennis Schmiege1, Timo Haselhoff1, Salman Ahmed1, Olympia Evdoxia Anastasiou2, Susanne Moebus1
1Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
2Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

Tóm tắt

Các kết quả sức khỏe liên quan đến COVID-19 cho thấy các mẫu hình địa lý khác nhau trong các quốc gia. Sự lây truyền của SARS-CoV-2 đòi hỏi sự gần gũi về mặt không gian giữa mọi người, điều này có thể bị ảnh hưởng bởi môi trường xây dựng. Chỉ có một vài nghiên cứu phân tích các ca nhiễm SARS-CoV-2 liên quan đến môi trường xây dựng trong các khu vực đô thị với độ phân giải không gian cao. Nghiên cứu này đã xem xét mối liên hệ giữa các yếu tố môi trường xây dựng và các ca nhiễm SARS-CoV-2 trong một khu vực đô thị ở Đức. Các ca nhiễm SARS-CoV-2 đã được xác nhận bằng phản ứng chuỗi polymerase (PCR) của 7866 công dân tại Essen trong khoảng thời gian từ tháng 3 năm 2020 đến tháng 5 năm 2021 đã được phân tích, tổng hợp ở cấp độ khu dân cư. Chúng tôi thực hiện phân tích hồi quy không gian để điều tra mối liên hệ giữa số ca nhiễm SARS-CoV-2 cộng dồn trên 1000 dân (ca. SARS-CoV-2) cho đến ngày 31.05.2021 và các yếu tố môi trường xây dựng. Các ca. SARS-CoV-2 trong các khu dân cư (trung vị: 11.5, IQR: 8.1–16.9) cho thấy một gradient phía bắc-nam rõ rệt do xã hội xác định. Các ước lượng hiệu ứng của các mô hình hồi quy không gian điều chỉnh cho thấy có mối liên hệ tiêu cực với độ xanh đô thị, tức là chỉ số khác biệt thực vật chuẩn hóa (NDVI) (β điều chỉnh = -35.36, 95% CI: -57.68; -13.04), số phòng cho mỗi người (-10.40, -13.79; -7.01), không gian sống cho mỗi người (-0.51, -0.66; -0.36), và các khu dân cư (-0.07, 0.16; 0.01) và khu thương mại (-0.15, -0.25; -0.05). Các khu dân cư có các tòa nhà nhiều tầng (-0.03, -0.12; 0.06) và không gian xanh (0.03, -0.05; 0.11) không cho thấy mối liên hệ đáng kể. Kết quả của chúng tôi cho thấy rằng môi trường xây dựng có vai trò quan trọng đối với sự lây lan của các ca nhiễm SARS-CoV-2, chẳng hạn như các căn hộ rộng rãi hơn hoặc mức độ xanh đô thị cao hơn liên quan đến tỷ lệ nhiễm thấp hơn ở cấp độ khu dân cư. Sự phân bố không đồng đều của những yếu tố này trong nội đô nhấn mạnh sự thiên lệch về sức khỏe môi trường đối với đại dịch COVID-19.

Từ khóa

#COVID-19 #SARS-CoV-2 #môi trường xây dựng #hồi quy không gian #Đức

Tài liệu tham khảo

Sannigrahi S, Pilla F, Basu B, Basu AS, Molter A. Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach. Sustain Cities Soc. 2020;62: 102418. https://doi.org/10.1016/j.scs.2020.102418. Amdaoud M, Arcuri G, Levratto N. Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID-19 in Europe. Eur J Health Econ. 2021;22(4):629–42. https://doi.org/10.1007/s10198-021-01280-6. Karmakar M, Lantz PM, Tipirneni R. Association of social and demographic factors with COVID-19 incidence and death rates in the US. JAMA Netw Open. 2021;4(1):e2036462. https://doi.org/10.1001/jamanetworkopen.2020.36462. Deguen S, Kihal-Talantikite W. Geographical pattern of COVID-19-related outcomes over the pandemic period in France: a nationwide socio-environmental study. Int J Environ Res Public Health. 2021;18(4). https://doi.org/10.3390/ijerph18041824. Kang Y, Baidya A, Aaron A, Wang J, Chan C, Wetzler E. Differences in the early impact of COVID-19 on food security and livelihoods in rural and urban areas in the Asia Pacific Region. Global Food Security. 2021;31:100580. https://doi.org/10.1016/j.gfs.2021.100580. Cuadros DF, Branscum AJ, Mukandavire Z, Miller FD, MacKinnon N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann Epidemiol. 2021;59:16–20. https://doi.org/10.1016/j.annepidem.2021.04.007. UN-Habitat. Cities and pandemics: towards a more just, green and healthy future. 2021:194. https://unhabitat.org/cities-and-pandemics-towards-a-more-just-green-and-healthy-future-0. Accessed 22 Aug 2022. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021;174(1):69–79. https://doi.org/10.7326/M20-5008. Roof K, Oleru N. Public health: seattle and King County’s push for the built environment. J Environ Health Jul-Aug. 2008;71(1):24–7. Barton H, Grant M. A health map for the local human habitat. J Royal Soc Promot Health. 2006;126(6):252–3. https://doi.org/10.1177/1466424006070466. Renalds A, Smith TH, Hale PJ. A systematic review of built environment and health. Fam Community Health. 2010;33(1). https://doi.org/10.1097/FCH.0b013e3181c4e2e5. Frumkin H. COVID-19, the built environment, and health. Environ Health Perspect. 2021;129(7):75001. https://doi.org/10.1289/EHP8888. Neelon B, Mutiso F, Mueller NT, Pearce JL, Benjamin-Neelon SE. Spatial and temporal trends in social vulnerability and COVID-19 incidence and death rates in the United States. PLoS ONE. 2021;16(3): e0248702. https://doi.org/10.1371/journal.pone.0248702. Barak N, Sommer U, Mualam N. Urban attributes and the spread of COVID-19: the effects of density, compliance and socio-political factors in Israel. Sci Total Environ. 2021;793:148626. https://doi.org/10.1016/j.scitotenv.2021.148626. Henning A, McLaughlin C, Armen S, Allen S. Socio-spatial influences on the prevalence of COVID-19 in central Pennsylvania. Spat Spatiotemporal Epidemiol. 2021;37: 100411. https://doi.org/10.1016/j.sste.2021.100411. Fortaleza C, Guimaraes RB, de Almeida GB, Pronunciate M, Ferreira CP. Taking the inner route: spatial and demographic factors affecting vulnerability to COVID-19 among 604 cities from inner Sao Paulo State, Brazil. Epidemiol Infect. 2020;148:e118. https://doi.org/10.1017/S095026882000134X. Maroko AR, Nash D, Pavilonis BT. COVID-19 and inequity: a comparative spatial analysis of New York City and Chicago hot spots. J Urban Health. 2020;97(4):461–70. https://doi.org/10.1007/s11524-020-00468-0. Lopez-Gay A, Spijker J, Cole HVS, et al. Sociodemographic determinants of intraurban variations in COVID-19 incidence: the case of Barcelona. J Epidemiol Community Health. 2022;76(1):1–7. https://doi.org/10.1136/jech-2020-216325. Kwok CYT, Wong MS, Chan KL, et al. Spatial analysis of the impact of urban geometry and socio-demographic characteristics on COVID-19, a study in Hong Kong. Sci Total Environ. 2021;764:144455. https://doi.org/10.1016/j.scitotenv.2020.144455. Gaisie E, Oppong-Yeboah NY, Cobbinah PB. Geographies of infections: built environment and COVID-19 pandemic in metropolitan Melbourne. Sustain Cities Soc. 2022;81: 103838. https://doi.org/10.1016/j.scs.2022.103838. Haug N, Geyrhofer L, Londei A, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4(12):1303–12. https://doi.org/10.1038/s41562-020-01009-0. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9. https://doi.org/10.1016/j.jclinepi.2007.11.008. DESTATIS. Alle politisch selbständigen Gemeinden mit ausgewählten Merkmalen am 30.09.2022 (3. Quartal 2022). DESTATIS Statistisches Bundesamt. Accessed 22/09/01, https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/GVAuszugQ/AuszugGV3QAktuell.html. Amt für Statistik SuW. Handbuch Essener Statistik: Soziales - Gesundheit. 1987–2020. n.a.:1–261. https://media.essen.de/media/wwwessende/aemter/12/handbuch/Soziales_Gesundheit.pdf. Accessed 22 Aug 2022. Essen S. Statistik zum Stand der Covid-19 Situation in Essen. Accessed 22/09/05, https://www.essen.de/dasistessen/essen_in_zahlen/corona__statistik.de.html. Essen S. Das Gebiet der Stadt Essen. Accessed 22/08/22, 2022. https://www.essen.de/dasistessen/essen_in_zahlen/das_gebiet_der_stadt_essen.de.html. infas/infas360, IHPH. coronadatenplattform. infas Institut für angewandte Sozialwissenschaft GmbH. https://www.corona-datenplattform.de/. Accessed 25 Aug 2022. Ehlert A. The socio-economic determinants of COVID-19: a spatial analysis of German county level data. Socioecon Plann Sci. 2021;78: 101083. https://doi.org/10.1016/j.seps.2021.101083. Straßburger M-L, Mewes L. Der Zusammenhang zwischen sozialen Ungleichheiten und Covid-19 Fallzahlen auf Stadtteilebene-Eine Fallstudie für 46 Stadtteile der Stadt Duisburg. ZFW – Adv Econ Geogr. 2022;66(2):111–30. https://doi.org/10.1515/zfw-2021-0030. Weier J, Herring D. Measuring vegetation (NDVI & EVI). NASA Earth Observatory. Accessed 22/08/22, https://earthobservatory.nasa.gov/features/MeasuringVegetation. Rhew IC, Vander Stoep A, Kearney A, Smith NL, Dunbar MD. Validation of the normalized difference vegetation index as a measure of neighborhood greenness. Ann Epidemiol. 2011;21(12):946–52. https://doi.org/10.1016/j.annepidem.2011.09.001. de Bellefon M-P, Loonis V, Le Gleut R. Codifying the neighbourhood structure. In: Loonis V, de Bellefon M-P, Costemalle V, Fontaine M, eds. Handbook of Spatial Analysis - Theory and practical application with R. INSEE Eurostat; 2018:31–47:chap 2. Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res Methodol. 2008;8(1):70. https://doi.org/10.1186/1471-2288-8-70. Dormann CF, McPherson JM, Araújo MB, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography. 2007;30(5):609–28. https://doi.org/10.1111/j.2007.0906-7590.05171.x. Anselin L. Spatial Econometrics. In: Baltagi BH, ed. A companion to theoretical econometrics. 1st ed. Oxford: Blackwell Publishing Ltd; 2003. p. 310–330. https://doi.org/10.1002/9780470996249.ch15 Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted regression: the analysis of spatially varying relationships. 1st ed. New York: John Wiley & Sons Ltd; 2002. p. 1–288. Farber S, Páez A. A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. J Geograph Syst. 2007;9(4):371–96. https://doi.org/10.1007/s10109-007-0051-3. Kissling WD, Carl G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr. 2008;17(1):59–71. https://doi.org/10.1111/j.1466-8238.2007.00334.x. Hair JF, Risher JJ, Sarstedt M, Ringle CM. When to use and how to report the results of PLS-SEM. Eur Bus Rev. 2019;31(1):2–24. https://doi.org/10.1108/EBR-11-2018-0203. Wehling HW. Organized and disorganized complexities and socio-economic implications in the northern Ruhr area. In: Walloth, C., Gurr, J., Schmidt, J. (eds) Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling. Springer; 2013:87–101. https://doi.org/10.1007/978-3-319-02996-2_6. Bogumil J, Heinze RG, Lehner F, Strohmeier P. Viel erreicht – wenig gewonnen: Ein realistischer Blick auf das Ruhrgebiet. 1st ed. Essen: Klartext Publisher; 2012. p. 13–177. Hong B, Bonczak BJ, Gupta A, Thorpe LE, Kontokosta CE. Exposure density and neighborhood disparities in COVID-19 infection risk. Proc Natl Acad Sci U S A. 2021; 118(13). https://doi.org/10.1073/pnas.2021258118. Li B, Peng Y, He H, Wang M, Feng T. Built environment and early infection of COVID-19 in urban districts: a case study of Huangzhou. Sustain Cities Soc. 2021;66: 102685. https://doi.org/10.1016/j.scs.2020.102685. Liu C, Liu Z, Guan C. The impacts of the built environment on the incidence rate of COVID-19: a case study of King County. Washington. Sustain Cities Soc. 2021;74:103144. https://doi.org/10.1016/j.scs.2021.103144. Schipperijn J, Bentsen P, Troelsen J, Toftager M, Stigsdotter UK. Associations between physical activity and characteristics of urban green space. Urban Forestry & Urban Greening. 2013;12(1):109–16. https://doi.org/10.1016/j.ufug.2012.12.002. Maas J, van Dillen SME, Verheij RA, Groenewegen PP. Social contacts as a possible mechanism behind the relation between green space and health. Health & Place. 2009;15(2):586–95. https://doi.org/10.1016/j.healthplace.2008.09.006. Nutsford D, Pearson AL, Kingham S. An ecological study investigating the association between access to urban green space and mental health. Public Health. 2013;127(11):1005–11. https://doi.org/10.1016/j.puhe.2013.08.016. Liu X-X, Ma X-L, Huang W-Z, et al. Green space and cardiovascular disease: a systematic review with meta-analysis. Environ Pollut. 2022;301:118990. https://doi.org/10.1016/j.envpol.2022.118990. Venter ZS, Barton DN, Gundersen V, Figari H, Nowell M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ Res Lett. 2020;15(10):104075. https://doi.org/10.1088/1748-9326/abb396. Derks J, Giessen L, Winkel G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. Forest Policy and Economics. 2020;118:102253. https://doi.org/10.1016/j.forpol.2020.102253. Spotswood EN, Benjamin M, Stoneburner L, et al. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat Sustain. 2021;4(12):1092–8. https://doi.org/10.1038/s41893-021-00781-9. You Y, Pan S. Urban vegetation slows down the spread of coronavirus disease (COVID-19) in the United States. Geophys Res Lett. 2020;47(18):e2020GL089286. https://doi.org/10.1029/2020GL089286. Lee K-S, Min HS, Jeon J-H, Choi Y-J, Bang JH, Sung HK. The association between greenness exposure and COVID-19 incidence in South Korea: an ecological study. Sci Total Environ. 2022;832:154981. https://doi.org/10.1016/j.scitotenv.2022.154981. Nguyen QC, Huang Y, Kumar A, et al. Using 164 million Google street view images to derive built environment predictors of COVID-19 cases. Int J Environ Res Public Health. 2020;17(17). https://doi.org/10.3390/ijerph17176359 WHO. WHO Housing and health guidelines. 2018. https://www.who.int/publications/i/item/9789241550376. Accessed 18 Aug 2022. D’Alessandro D, Gola M, Appolloni L, et al. COVID-19 and living space challenge. Well-being and public health recommendations for a healthy, safe, and sustainable housing. Acta Biomedica Atenei Parmensis. 2020;91(9-S):61–75. https://doi.org/10.23750/abm.v91i9-S.10115. Zimmermann R, Sarma N, Thieme-Thörel D, et al. COVID-19 outbreaks in settings with precarious housing conditions in Germany: challenges and lessons learned. Original Research. Front Public Health. 2021;9. https://doi.org/10.3389/fpubh.2021.708694. Ahmad K, Erqou S, Shah N, et al. Association of poor housing conditions with COVID-19 incidence and mortality across US counties. PLoS ONE. 2020;15(11): e0241327. https://doi.org/10.1371/journal.pone.0241327. Castro RR, Santos RSC, Sousa GJB, et al. Spatial dynamics of the COVID-19 pandemic in Brazil. Epidemiol Infect. 2021;149:e60. https://doi.org/10.1017/S0950268821000479. Kashem SB, Baker DM, Gonzalez SR, Lee CA. Exploring the nexus between social vulnerability, built environment, and the prevalence of COVID-19: a case study of Chicago. Sustain Cities Soc. 2021;75: 103261. https://doi.org/10.1016/j.scs.2021.103261. Kamis C, Stolte A, West JS, et al. Overcrowding and COVID-19 mortality across U.S. counties: are disparities growing over time? SSM - Popul Health. 2021;15:100845. https://doi.org/10.1016/j.ssmph.2021.100845. Buckle C, Gurran N, Phibbs P, Harris P, Lea T, Shrivastava R. Marginal housing during COVID-19. 2020:1–55. AHURI Final Rep. https://www.ahuri.edu.au/sites/default/files/migration/documents/AHURI-Final-Report-348-Marginal-housing-during-COVID-19.pdf. Accessed 18 Aug 2022.